論文の概要: Towards Foundation-model-based Multiagent System to Accelerate AI for Social Impact
- arxiv url: http://arxiv.org/abs/2412.07880v2
- Date: Thu, 12 Dec 2024 15:08:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:50:06.486775
- Title: Towards Foundation-model-based Multiagent System to Accelerate AI for Social Impact
- Title(参考訳): ファウンデーションモデルに基づくマルチエージェントシステムを目指して : 社会的インパクトのためのAIの高速化
- Authors: Yunfan Zhao, Niclas Boehmer, Aparna Taneja, Milind Tambe,
- Abstract要約: 既存のAI4SI研究は、しばしば労働集約的かつリソース要求的である。
本稿では,このようなベースレベルのシステムの開発を加速するために,メタレベルのマルチエージェントシステムを提案する。
- 参考スコア(独自算出の注目度): 37.72844862625008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI for social impact (AI4SI) offers significant potential for addressing complex societal challenges in areas such as public health, agriculture, education, conservation, and public safety. However, existing AI4SI research is often labor-intensive and resource-demanding, limiting its accessibility and scalability; the standard approach is to design a (base-level) system tailored to a specific AI4SI problem. We propose the development of a novel meta-level multi-agent system designed to accelerate the development of such base-level systems, thereby reducing the computational cost and the burden on social impact domain experts and AI researchers. Leveraging advancements in foundation models and large language models, our proposed approach focuses on resource allocation problems providing help across the full AI4SI pipeline from problem formulation over solution design to impact evaluation. We highlight the ethical considerations and challenges inherent in deploying such systems and emphasize the importance of a human-in-the-loop approach to ensure the responsible and effective application of AI systems.
- Abstract(参考訳): AI for Social Impact (AI4SI) は、公衆衛生、農業、教育、保護、公共安全といった分野における複雑な社会的課題に対処する上で、大きな可能性を秘めている。
しかし、既存のAI4SI研究は、しばしば労働集約的で、そのアクセシビリティとスケーラビリティを制限し、特定のAI4SI問題に適した(ベースレベルの)システムを設計する。
本稿では,このようなベースレベルのシステムの開発を加速し,社会的影響領域の専門家やAI研究者の計算コストと負担を軽減することを目的とした,新しいメタレベルのマルチエージェントシステムの開発を提案する。
基礎モデルと大規模言語モデルの進歩を生かして,提案手法は,AI4SIパイプライン全体に対して,ソリューション設計による問題定式化から評価への影響に至るまで,リソース割り当ての問題に重点を置いている。
我々は、そのようなシステムを展開する際に固有の倫理的考察と課題を強調し、AIシステムの責任と効果的な適用を保証するための人道的なアプローチの重要性を強調します。
関連論文リスト
- Engineering Artificial Intelligence: Framework, Challenges, and Future Direction [0.2678472239880052]
本稿では,「ABCDE」をエンジニアリングAIの重要な要素として紹介する。
統一的で体系的なAIエコシステムフレームワークを提案する。
本稿では,包括的視点を提供することで,AIの戦略的実装を進めることを目的とする。
論文 参考訳(メタデータ) (2025-04-03T04:30:10Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
論文 参考訳(メタデータ) (2024-04-07T07:05:59Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - Requirement Engineering Challenges for AI-intense Systems Development [1.6563993097383285]
重要な課題は、複雑なAIインテリジェンスシステムやアプリケーションの振る舞いと品質特性の定義と保証に関係している、と私たちは主張する。
産業、輸送、ホームオートメーションに関連する複雑なAIインテンシングシステムおよびアプリケーションに関連するユースケースから4つの課題領域を導き出します。
これらの課題を解決することは、複雑なAIインテンシングシステムやアプリケーションの開発アプローチに新しい要件エンジニアリング手法を統合するプロセスサポートを暗示します。
論文 参考訳(メタデータ) (2021-03-18T14:06:13Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。