論文の概要: Thinking Fast and Laterally: Multi-Agentic Approach for Reasoning about Uncertain Emerging Events
- arxiv url: http://arxiv.org/abs/2412.07977v1
- Date: Tue, 10 Dec 2024 23:29:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:02:41.731692
- Title: Thinking Fast and Laterally: Multi-Agentic Approach for Reasoning about Uncertain Emerging Events
- Title(参考訳): 高速かつ横向きに考える:未確認イベントの推論のためのマルチエージェントアプローチ
- Authors: Stefan Dernbach, Alejandro Michel, Khushbu Agarwal, Christopher Brissette, Geetika Gupta, Sutanay Choudhury,
- Abstract要約: 本稿では,AIシステムにシステム2推論機能を実装するための側方的思考を紹介する。
本稿では,側方的思考クエリと評価データセットを体系的に生成・モデル化するためのフレームワークを提案する。
本稿では,ストリーミングデータ環境における複雑な低特異性クエリを処理するために設計されたマルチエージェントフレームワークであるStreaming Agentic Lateral Thinking (SALT)を紹介する。
- 参考スコア(独自算出の注目度): 37.77679335989817
- License:
- Abstract: This paper introduces lateral thinking to implement System-2 reasoning capabilities in AI systems, focusing on anticipatory and causal reasoning under uncertainty. We present a framework for systematic generation and modeling of lateral thinking queries and evaluation datasets. We introduce Streaming Agentic Lateral Thinking (SALT), a multi-agent framework designed to process complex, low-specificity queries in streaming data environments. SALT implements lateral thinking-inspired System-2 reasoning through a dynamic communication structure between specialized agents. Our key insight is that lateral information flow across long-distance agent interactions, combined with fine-grained belief management, yields richer information contexts and enhanced reasoning. Preliminary quantitative and qualitative evaluations indicate SALT's potential to outperform single-agent systems in handling complex lateral reasoning tasks in a streaming environment.
- Abstract(参考訳): 本稿では,不確実性を考慮した予測と因果推論に焦点をあて,AIシステムにシステム2推論機能を実装するための側方的思考を紹介する。
本稿では,側方的思考クエリと評価データセットを体系的に生成・モデル化するためのフレームワークを提案する。
本稿では,ストリーミングデータ環境における複雑な低特異性クエリを処理するために設計されたマルチエージェントフレームワークであるStreaming Agentic Lateral Thinking (SALT)を紹介する。
SALTは、特殊なエージェント間の動的通信構造を通じて、横方向の思考にインスパイアされたSystem-2推論を実装している。
我々の重要な洞察は、長距離エージェント間相互作用にまたがる横方向の情報の流れが、きめ細かい信念管理と組み合わされ、より豊かな情報コンテキストと強化された推論をもたらすことである。
予備的な定量的および定性的な評価は、ストリーミング環境における複雑な横方向推論タスクの処理において、SALTが単一エージェントシステムより優れている可能性を示唆している。
関連論文リスト
- Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research [7.4327380079414676]
本稿では,外部ツール利用エージェントを統合することで,大規模言語モデル(LLM)推論を強化するフレームワークであるAgentic Reasoningを紹介する。
本フレームワークでは,論理的関係を追跡するための構造化知識グラフを構築するMind Mapエージェントを導入している。
PhDレベルの科学的推論(GPQA)とドメイン固有の深層研究タスクの評価は、我々のアプローチが既存のモデルを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2025-02-07T04:08:46Z) - Agent-Centric Projection of Prompting Techniques and Implications for Synthetic Training Data for Large Language Models [0.8879149917735942]
本稿では,Large Language Models(LLMs)における線形コンテキスト(連続的な相互作用の連続配列)と非線形コンテキスト(分岐やマルチパス)の概念を紹介し,解説する。
これらの概念は、プロンプト戦略とマルチエージェントシステムとの深い関係を明らかにするフレームワークであるプロンプトテクニックのエージェント中心のプロジェクションの開発を可能にする。
論文 参考訳(メタデータ) (2025-01-14T03:26:43Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
我々はmccHRLと呼ばれる新しいフレームワークを提案し、リストワイドレコメンデーションにおける時間的抽象化のレベルを異なるものにする。
階層的な枠組みの中では、ハイレベルエージェントがユーザ知覚の進化を研究し、低レベルエージェントがアイテム選択ポリシーを作成している。
その結果,本手法による性能改善は,いくつかのよく知られたベースラインと比較して有意な結果が得られた。
論文 参考訳(メタデータ) (2024-09-11T17:01:06Z) - Visual Agents as Fast and Slow Thinkers [88.1404921693082]
本稿では、Fast and Slow Thinking機構を視覚エージェントに組み込んだFaSTを紹介する。
FaSTは、システム1/2モード間の動的選択にスイッチアダプタを使用する。
モデルの信頼性を調整し、新しいコンテキストデータを統合することで、不確実で目に見えないオブジェクトに取り組む。
論文 参考訳(メタデータ) (2024-08-16T17:44:02Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Leveraging Counterfactual Paths for Contrastive Explanations of POMDP Policies [2.4332936182093197]
XAIは、エージェント行動の説明を提供することで、混乱を減らし、システムの信頼を高めることを目的としている。
POMDPは、遷移と状態の不確実性を推論できる柔軟なフレームワークを提供する。
本研究は,POMDPポリシーの対照的な説明を生成するために,ユーザが提供する反ファクトファクトの活用について検討する。
論文 参考訳(メタデータ) (2024-03-28T18:19:38Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - DUMA: a Dual-Mind Conversational Agent with Fast and Slow Thinking [12.71072798544731]
DUMAは2つの生成型Large Language Model(LLM)をそれぞれ高速な思考と低速な思考に利用することで、デュアルミンドのメカニズムを具現化している。
我々は、不動産業界のオンライン調査を扱うための会話エージェントを構築した。
論文 参考訳(メタデータ) (2023-10-27T11:43:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。