論文の概要: RALI@TREC iKAT 2024: Achieving Personalization via Retrieval Fusion in Conversational Search
- arxiv url: http://arxiv.org/abs/2412.07998v1
- Date: Wed, 11 Dec 2024 00:44:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:38.120041
- Title: RALI@TREC iKAT 2024: Achieving Personalization via Retrieval Fusion in Conversational Search
- Title(参考訳): RALI@TREC iKAT 2024:会話検索における検索融合によるパーソナライズの実現
- Authors: Yuchen Hui, Fengran Mo, Milan Mao, Jian-Yun Nie,
- Abstract要約: パーソナライズされた検索では、ユーザの複雑な検索意図を効果的にキャプチャするには、ユーザプロファイルからコンテキスト情報とキー要素の両方をクエリ再構成に組み込む必要がある。
これはオーバーパーソナライゼーション(over-personalization)という課題です。
そこで本研究では,クエリから生成したランキングリストを,パーソナライズレベルの違いで融合させることにより,異なる戦略を提案する。
- 参考スコア(独自算出の注目度): 24.464088639113417
- License:
- Abstract: The Recherche Appliquee en Linguistique Informatique (RALI) team participated in the 2024 TREC Interactive Knowledge Assistance (iKAT) Track. In personalized conversational search, effectively capturing a user's complex search intent requires incorporating both contextual information and key elements from the user profile into query reformulation. The user profile often contains many relevant pieces, and each could potentially complement the user's information needs. It is difficult to disregard any of them, whereas introducing an excessive number of these pieces risks drifting from the original query and hinders search performance. This is a challenge we denote as over-personalization. To address this, we propose different strategies by fusing ranking lists generated from the queries with different levels of personalization.
- Abstract(参考訳): Recherche Appliquee en Linguistique Informatique (RALI) チームは2024年のTREC Interactive Knowledge Assistance (iKAT) Trackに参加した。
パーソナライズされた会話検索では、ユーザの複雑な検索意図を効果的にキャプチャするには、ユーザプロファイルからコンテキスト情報とキー要素の両方をクエリ再構成に組み込む必要がある。
ユーザプロファイルには、多くの関連する要素が含まれており、それぞれがユーザの情報ニーズを補完する可能性がある。
それらを無視することは難しいが、これらの部品の過剰な数の導入は、元のクエリから逸脱し、検索性能を阻害するリスクを負う。
これはオーバーパーソナライゼーション(over-personalization)という課題です。
そこで本研究では,クエリから生成したランキングリストを,パーソナライズレベルの違いで融合させることにより,異なる戦略を提案する。
関連論文リスト
- IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search [6.974395116689502]
iKAT 2024は、対話アシスタントの進化に焦点を当て、対話と応答をパーソナライズされたユーザー知識から適応することができる。
このトラックには、Personal Textual Knowledge Base(PTKB)と会話型AIタスク(通訳ランキングや応答生成など)が組み込まれている。
論文 参考訳(メタデータ) (2024-11-22T05:18:35Z) - TREC iKAT 2023: A Test Collection for Evaluating Conversational and Interactive Knowledge Assistants [10.511277428023305]
TREC Interactive Knowledge Assistance Track (iKAT) コレクションは、研究者が会話検索エージェント(CSA)をテストおよび評価できるようにすることを目的としている。
このコレクションには、20のトピックにまたがる36のパーソナライズされた対話が含まれており、それぞれにパーソナライズされたユーザペルソナを定義するPersonal Text Knowledge Base (PTKB)が組み合わされている。
約26,000の通路を持つ344の旋回は、関連性の評価、および4つの重要な次元(妥当性、完全性、基底性、自然性)で生成された応答に関する追加評価として提供される。
論文 参考訳(メタデータ) (2024-05-04T11:22:16Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - TREC iKAT 2023: The Interactive Knowledge Assistance Track Overview [11.276981461219515]
iKATは、ユーザの以前のインタラクションと現在のコンテキストに基づいて応答を適応する対話型検索エージェントの作成と研究を強調している。
実行のほとんどはパイプラインでLarge Language Models(LLM)を活用しており、いくつかはジェネレータの検索アプローチに重点を置いている。
論文 参考訳(メタデータ) (2024-01-02T18:40:03Z) - An Interactive Query Generation Assistant using LLM-based Prompt
Modification and User Feedback [9.461978375200102]
提案するインタフェースは,単言語および多言語文書コレクション上での対話型クエリ生成をサポートする,新しい検索インタフェースである。
このインタフェースにより、ユーザーは異なるLCMによって生成されたクエリを洗練し、検索したドキュメントやパスに対するフィードバックを提供し、より効果的なクエリを生成するプロンプトとしてユーザーのフィードバックを組み込むことができる。
論文 参考訳(メタデータ) (2023-11-19T04:42:24Z) - Knowledge-Augmented Large Language Models for Personalized Contextual
Query Suggestion [16.563311988191636]
我々は,Web上での検索と閲覧活動に基づいて,各ユーザを対象としたエンティティ中心の知識ストアを構築した。
この知識ストアは、公的な知識グラフ上の興味と知識のユーザ固有の集約予測のみを生成するため、軽量である。
論文 参考訳(メタデータ) (2023-11-10T01:18:47Z) - Decomposing Complex Queries for Tip-of-the-tongue Retrieval [72.07449449115167]
複雑なクエリは、コンテンツ要素(例えば、書籍の文字やイベント)、ドキュメントテキスト以外の情報を記述する。
この検索設定は舌の先端 (TOT) と呼ばれ、クエリと文書テキスト間の語彙的および意味的重複に依存するモデルでは特に困難である。
クエリを個別のヒントに分解し、サブクエリとしてルーティングし、特定の検索者にルーティングし、結果をアンサンブルすることで、このような複雑なクエリを扱うための、シンプルで効果的なフレームワークを導入します。
論文 参考訳(メタデータ) (2023-05-24T11:43:40Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。