Robustness of entanglement in a non-Hermitian cavity-optomechanical system even away from exceptional points
- URL: http://arxiv.org/abs/2412.08123v2
- Date: Thu, 19 Jun 2025 15:46:56 GMT
- Title: Robustness of entanglement in a non-Hermitian cavity-optomechanical system even away from exceptional points
- Authors: Jia-Jia Wang, Yu-Hong He, Chang-Geng Liao, Rong-Xin Chen, Jacob A. Dunningham,
- Abstract summary: Quantum physics can be extended into the complex domain by considering non-Hermitian Hamiltonians that are $mathcalPT$-symmetric.<n>We investigate whether similar beneficial effects can be achieved away from exceptional points (EPs)<n>We find that the sudden disappearance of entanglement can be mitigated at EPs, and also show that the revival of entanglement is quite robust to thermal noise in a group of parameters away from EPs.
- Score: 2.778721019132512
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum physics can be extended into the complex domain by considering non-Hermitian Hamiltonians that are $\mathcal{PT}$-symmetric. These exhibit exceptional points (EPs) where the eigenspectrum changes from purely real to purely imaginary values and have useful properties enabling applications such as accelerated entanglement generation and the delay of the sudden death of entanglement in noisy systems. An interesting question is whether similar beneficial effects can be achieved away from EPs, since this would extend the available parameter space and make experiments more accessible. We investigate this by considering a $\mathcal{PT}$-symmetric optomechanical system but also consider what happens when two-mode squeezing interactions are included, taking us into the pseudo-Hermitian regime. The addition of squeezing is motivated by an attempt to extend the lifetime of the system's entanglement. While this does not prove to be the case, rich dynamics are nonetheless observed in both the pseudo-Hermitian and $\mathcal{PT}$-symmetric systems, including the sudden death and revival of entanglement under certain conditions. In both cases, we find that the sudden disappearance of entanglement can be mitigated at EPs, and also show that the revival of entanglement is quite robust to thermal noise in a group of parameters away from the EPs. This investigation extends our understanding of non-Hermitian systems and opens a new perspective for the development of quantum devices in non-Hermitian systems even away from EPs.
Related papers
- Unveiling the Self-Orthogonality at Exceptional Points in Driven $\mathcal{PT}$-Symmetric Systems [79.16635054977068]
We explore the effect of self-orthogonality at exceptional points (EPs) in non-Hermitian Parity-Time-symmetric systems.<n>Using a driven three-band lattice model, we show that the Rabi frequency diverges as the system approaches an EP due to the coalescence of eigenstates.
arXiv Detail & Related papers (2025-07-14T12:53:10Z) - Kubo-Martin-Schwinger relation for energy eigenstates of SU(2)-symmetric quantum many-body systems [41.94295877935867]
We show that non-Abelian symmetries may alter conventional thermodynamics.<n>This work helps extend into nonequilibrium physics the effort to identify how non-Abelian symmetries may alter conventional thermodynamics.
arXiv Detail & Related papers (2025-07-09T19:46:47Z) - Quantum Noise Suppression in Non-Hermitian Resonators at Exceptional Point [0.0]
We investigate the impact of quantum noise on non-Hermitian resonators at an exceptional point (EP)
The system's irreversible Markovian dynamics is modeled using the Lindblad master equation.
Out of the $mathcalPmathcalT$-symmetric regime, however, the system demonstrates stability within a specific parametric domain.
arXiv Detail & Related papers (2025-01-14T15:13:10Z) - Programmable simulation of high-order exceptional point with a trapped ion [20.656857180988926]
We experimentally demonstrate a native programmable control to simulate a high-order non-Hermitian Hamiltonian in a multi-dimensional trapped ion system.
Our results pave the way for scalable quantum simulation of high-dimensional dissipative systems.
arXiv Detail & Related papers (2024-12-13T01:00:22Z) - Robust analog quantum simulators by quantum error-detecting codes [22.034646136056804]
We provide a recipe for error-resilient Hamiltonian simulations, making use of an excited encoding subspace stabilized by solely $2$-local commuting Hamiltonians.<n>Our method is scalable as it only requires penalty terms that scale to system size.
arXiv Detail & Related papers (2024-12-10T18:58:05Z) - Dynamic manifestation of exception points in a non-Hermitian continuous model with an imaginary periodic potential [0.0]
This study focuses on exceptional points (EPs) in continuous systems rather than discrete non-Hermitian systems.
The non-Hermiticity of the system stems from the local imaginary potential, which can be effectively achieved through particle loss.
Our investigation sheds light on EP behaviors, potentially catalyzing further exploration of EP phenomena across a variety of quantum simulation setups.
arXiv Detail & Related papers (2024-11-09T09:34:20Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) and their applications have been extensively studied.<n>We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.<n>We demonstrate that these EPs signify transitions between different topological classes.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Restoring Adiabatic State Transfer in Time-Modulated Non-Hermitian
Systems [0.0]
We show that adiabaticity can be achieved when dynamically winding around exceptional points (EPs) in non-Hermitian systems.
Our findings offer a promise for advancing various wave manipulation protocols in both quantum and classical domains.
arXiv Detail & Related papers (2024-02-23T12:53:16Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Exceptional entanglement phenomena: non-Hermiticity meeting
non-classicality [11.121410238719466]
Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most significant advancements in physics.
Here, we unveil distinct exceptional entanglement phenomena, exemplified by an entanglement transition, occurring at the exceptional point of NH interacting quantum systems.
Our results lay the foundation for studies of genuinely quantum-mechanical NH physics, signified by exceptional-point-enabled entanglement behaviors.
arXiv Detail & Related papers (2022-10-10T08:48:18Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators.
integrated light emission from such asymmetric dyads can be efficiently used for all-optical degenerative diffusion models of machine learning.
arXiv Detail & Related papers (2022-06-24T10:19:36Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Protection of quantum evolutions under parity-time symmetric
non-Hermitian Hamiltonians by dynamical decoupling [8.540612560553887]
Parity-time (PT) symmetric non-Hermitian Hamiltonians bring about many novel features and interesting applications.
The performance of evolutions under $mathcalPT$-symmetric Hamiltonians is degraded by the inevitable noise and errors.
In contrast to Hermitian Hamiltonians, the fluctuations in dissipative beams that are utilized to generate non-Hermitian contributions in the PT-symmetric Hamiltonians cause additional errors.
Here we achieve the protection of PT-symmetric Hamiltonians against noise acting along the qubit's quantization axis by combining quantum evolutions with dynamical decoupling sequences
arXiv Detail & Related papers (2022-03-03T01:50:13Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Emergent non-Hermitian localization phenomena in the synthetic space of
zero-dimensional bosonic systems [0.0]
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research.
We show how the non-Hermitian localization phenomena can naturally emerge in the synthetic field moments space of zero-dimensional bosonic systems.
arXiv Detail & Related papers (2021-10-28T16:44:52Z) - Higher-order exceptional point in a pseudo-Hermitian cavity
optomechanical system [4.4623066415671895]
We propose a benchmark cavity optomechanical (COM) system consisting of a mechanical resonator (MR) coupled to two cavities via radiation pressure for predicting the third-order exceptional point (EP3)
Our proposal provides a potential way to realize sensitive detection and study other physical phenomena around higher-order EP3 in non-Hermitian COM systems.
arXiv Detail & Related papers (2021-09-24T23:24:15Z) - Observation of exceptional point in a PT broken non-Hermitian system
simulated using a quantum circuit [3.3229068574143534]
We propose an extendable method to simulate non-Hermitian systems on the quantum circuits.
Our model is capable of simulating large scale systems with higher-order EPs.
arXiv Detail & Related papers (2020-05-28T07:59:58Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.