DOGE: An Extrinsic Orientation and Gyroscope Bias Estimation for Visual-Inertial Odometry Initialization
- URL: http://arxiv.org/abs/2412.08135v1
- Date: Wed, 11 Dec 2024 06:44:22 GMT
- Title: DOGE: An Extrinsic Orientation and Gyroscope Bias Estimation for Visual-Inertial Odometry Initialization
- Authors: Zewen Xu, Yijia He, Hao Wei, Yihong Wu,
- Abstract summary: We propose a new visual-inertial odometry (VIO) method with higher precision and better robustness without delayed rotational calibration.
Our method outperforms the state-of-the-art methods in both accuracy and robustness while maintaining competitive efficiency.
- Score: 7.706396165773557
- License:
- Abstract: Most existing visual-inertial odometry (VIO) initialization methods rely on accurate pre-calibrated extrinsic parameters. However, during long-term use, irreversible structural deformation caused by temperature changes, mechanical squeezing, etc. will cause changes in extrinsic parameters, especially in the rotational part. Existing initialization methods that simultaneously estimate extrinsic parameters suffer from poor robustness, low precision, and long initialization latency due to the need for sufficient translational motion. To address these problems, we propose a novel VIO initialization method, which jointly considers extrinsic orientation and gyroscope bias within the normal epipolar constraints, achieving higher precision and better robustness without delayed rotational calibration. First, a rotation-only constraint is designed for extrinsic orientation and gyroscope bias estimation, which tightly couples gyroscope measurements and visual observations and can be solved in pure-rotation cases. Second, we propose a weighting strategy together with a failure detection strategy to enhance the precision and robustness of the estimator. Finally, we leverage Maximum A Posteriori to refine the results before enough translation parallax comes. Extensive experiments have demonstrated that our method outperforms the state-of-the-art methods in both accuracy and robustness while maintaining competitive efficiency.
Related papers
- Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - EDI: ESKF-based Disjoint Initialization for Visual-Inertial SLAM Systems [9.937997167972743]
We propose a novel approach for fast, accurate, and robust visual-inertial initialization.
Our method achieves an average scale error of 5.8% in less than 3 seconds.
arXiv Detail & Related papers (2023-08-04T19:06:58Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation
Optimization under Uncertain Feature Positions [53.478856119297284]
We introduce the probabilistic normal epipolar constraint (PNEC) that overcomes the limitation by accounting for anisotropic and inhomogeneous uncertainties in the feature positions.
In experiments on synthetic data, we demonstrate that the novel PNEC yields more accurate rotation estimates than the original NEC.
We integrate the proposed method into a state-of-the-art monocular rotation-only odometry system and achieve consistently improved results for the real-world KITTI dataset.
arXiv Detail & Related papers (2022-04-05T14:47:11Z) - Learning High-Precision Bounding Box for Rotated Object Detection via
Kullback-Leibler Divergence [100.6913091147422]
Existing rotated object detectors are mostly inherited from the horizontal detection paradigm.
In this paper, we are motivated to change the design of rotation regression loss from induction paradigm to deduction methodology.
arXiv Detail & Related papers (2021-06-03T14:29:19Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Continuous hand-eye calibration using 3D points [0.0]
We show that a simple closed-form solution with a shifted focus towards the equation of translation only solves for the necessary hand-eye transformation.
We show that it is superior in accuracy and robustness compared to traditional approaches.
Second, we decrease the dependency on the calibration object to a single 3D-point by using a similar formulation based on the equation of translation.
arXiv Detail & Related papers (2020-04-27T07:13:33Z) - Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry [19.955414423860788]
This paper presents an online method for bootstrapping the optimization-based monocular visual-inertial odometry (VIO)
The method can online calibrate the relative transformation (spatial) and time offsets (temporal) among camera and IMU, as well as estimate the initial values of metric scale, velocity, gravity, gyroscope bias, and accelerometer bias.
Experimental results on public datasets show that the initial values and the parameters, as well as the sensor poses, can be accurately estimated by the proposed method.
arXiv Detail & Related papers (2020-04-12T03:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.