Wasserstein Distributionally Robust Estimation in High Dimensions: Performance Analysis and Optimal Hyperparameter Tuning
- URL: http://arxiv.org/abs/2206.13269v3
- Date: Sat, 03 May 2025 03:39:56 GMT
- Title: Wasserstein Distributionally Robust Estimation in High Dimensions: Performance Analysis and Optimal Hyperparameter Tuning
- Authors: Liviu Aolaritei, Soroosh Shafiee, Florian Dörfler,
- Abstract summary: Distributionally robust optimization (DRO) has become a powerful framework for estimation under uncertainty.<n>We propose a DRO-based method for linear regression and address a central question: how to optimally choose the robustness radius.<n>We show that our method achieves the same effect as cross-validation, but at a fraction of the computational cost.
- Score: 2.4578723416255754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributionally robust optimization (DRO) has become a powerful framework for estimation under uncertainty, offering strong out-of-sample performance and principled regularization. In this paper, we propose a DRO-based method for linear regression and address a central question: how to optimally choose the robustness radius, which controls the trade-off between robustness and accuracy. Focusing on high-dimensional settings where the dimension and the number of samples are both large and comparable in size, we employ tools from high-dimensional asymptotic statistics to precisely characterize the estimation error of the resulting estimator. Remarkably, this error can be recovered by solving a simple convex-concave optimization problem involving only four scalar variables. This characterization enables efficient selection of the radius that minimizes the estimation error. In doing so, it achieves the same effect as cross-validation, but at a fraction of the computational cost. Numerical experiments confirm that our theoretical predictions closely match empirical performance and that the optimal radius selected through our method aligns with that chosen by cross-validation, highlighting both the accuracy and the practical benefits of our approach.
Related papers
- Estimation of discrete distributions in relative entropy, and the deviations of the missing mass [3.4265828682659705]
We study the problem of estimating a distribution over a finite alphabet from an i.i.d. sample, with accuracy measured in relative entropy.
While optimal expected risk bounds are known, high-probability guarantees remain less well-understood.
arXiv Detail & Related papers (2025-04-30T16:47:10Z) - Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.
Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls [18.047245099229325]
We propose a distributionally robust approach that uses an ambiguity set by the intersection of two Wasserstein balls.
We demonstrate the strong empirical performance of our proposed models.
arXiv Detail & Related papers (2024-06-04T15:46:41Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Optimal convex $M$-estimation via score matching [6.115859302936817]
We construct a data-driven convex loss function with respect to which empirical risk minimisation yields optimal variance in the downstream estimation of the regression coefficients.
Our semiparametric approach targets the best decreasing approximation of the derivative of the derivative of the log-density of the noise distribution.
arXiv Detail & Related papers (2024-03-25T12:23:19Z) - Automatic Outlier Rectification via Optimal Transport [7.421153752627664]
We propose a novel conceptual framework to detect outliers using optimal transport with a concave cost function.
We take the first step to utilize the optimal transport distance with a concave cost function to construct a rectification set.
Then, we select the best distribution within the rectification set to perform the estimation task.
arXiv Detail & Related papers (2024-03-21T01:30:24Z) - Doubly Robust Inference in Causal Latent Factor Models [12.116813197164047]
This article introduces a new estimator of average treatment effects under unobserved confounding in modern data-rich environments featuring large numbers of units and outcomes.
We derive finite-sample weighting and guarantees, and show that the error of the new estimator converges to a mean-zero Gaussian distribution at a parametric rate.
arXiv Detail & Related papers (2024-02-18T17:13:46Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Statistical Analysis of Wasserstein Distributionally Robust Estimators [9.208007322096535]
We consider statistical methods which invoke a min-max distributionally robust formulation to extract good out-of-sample performance in data-driven optimization and learning problems.
The resulting Distributionally Robust Optimization (DRO) formulations are specified using optimal transportation phenomena.
This tutorial is devoted to insights into the nature of the adversarials selected by the min-max formulations and additional applications of optimal transport projections.
arXiv Detail & Related papers (2021-08-04T15:45:47Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
We consider a family of constrained optimization problems arising in machine learning.
Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters.
We show how the resulting optimization problem can be solved using standard gradient based methods.
arXiv Detail & Related papers (2021-07-23T00:04:39Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Distributionally Robust Parametric Maximum Likelihood Estimation [13.09499764232737]
We propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric nominal distribution.
Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks.
arXiv Detail & Related papers (2020-10-11T19:05:49Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
We propose to use a nearest-neighbor-based $gamma$-divergence estimator as a data discrepancy measure.
Our method achieves significantly higher robustness than existing discrepancy measures.
arXiv Detail & Related papers (2020-06-13T06:09:27Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
We show that the problem of robust mean estimation in the presence of a constant adversarial fraction can be solved by gradient descent.
Our work establishes an intriguing connection between the near non-lemma estimation and robust statistics.
arXiv Detail & Related papers (2020-05-04T10:48:04Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.