論文の概要: SLGaussian: Fast Language Gaussian Splatting in Sparse Views
- arxiv url: http://arxiv.org/abs/2412.08331v1
- Date: Wed, 11 Dec 2024 12:18:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:02:20.610631
- Title: SLGaussian: Fast Language Gaussian Splatting in Sparse Views
- Title(参考訳): SLGaussian: スパースビューでの高速言語ガウススプレイティング
- Authors: Kangjie Chen, BingQuan Dai, Minghan Qin, Dongbin Zhang, Peihao Li, Yingshuang Zou, Haoqian Wang,
- Abstract要約: スパース視点から3次元意味体を構築するフィードフォワード手法であるSLGaussianを提案する。
SLGaussianは、3D空間に言語情報を効率よく埋め込むことができ、スパースビュー条件下で正確な3Dシーン理解のための堅牢なソリューションを提供する。
- 参考スコア(独自算出の注目度): 15.0280871846496
- License:
- Abstract: 3D semantic field learning is crucial for applications like autonomous navigation, AR/VR, and robotics, where accurate comprehension of 3D scenes from limited viewpoints is essential. Existing methods struggle under sparse view conditions, relying on inefficient per-scene multi-view optimizations, which are impractical for many real-world tasks. To address this, we propose SLGaussian, a feed-forward method for constructing 3D semantic fields from sparse viewpoints, allowing direct inference of 3DGS-based scenes. By ensuring consistent SAM segmentations through video tracking and using low-dimensional indexing for high-dimensional CLIP features, SLGaussian efficiently embeds language information in 3D space, offering a robust solution for accurate 3D scene understanding under sparse view conditions. In experiments on two-view sparse 3D object querying and segmentation in the LERF and 3D-OVS datasets, SLGaussian outperforms existing methods in chosen IoU, Localization Accuracy, and mIoU. Moreover, our model achieves scene inference in under 30 seconds and open-vocabulary querying in just 0.011 seconds per query.
- Abstract(参考訳): 3Dセマンティック・フィールド・ラーニングは、自律ナビゲーション、AR/VR、ロボット工学といったアプリケーションにとって不可欠であり、限られた視点から3Dシーンを正確に理解することが不可欠である。
既存の手法はスパースビュー条件下では困難であり、非効率なシーンごとのマルチビュー最適化に依存している。
そこで本研究では,SLGaussianを提案する。SLGaussianは3DGSをベースとしたシーンの直接推論が可能な3Dセマンティックフィールドをスパース視点から構築するためのフィードフォワード手法である。
映像追跡による一貫したSAMセグメンテーションの確保と高次元CLIP機能のための低次元インデクシングの利用により、SLGaussianは3次元空間に言語情報を効率的に埋め込み、スパースビュー条件下で正確な3次元シーン理解のための堅牢なソリューションを提供する。
LERFおよび3D-OVSデータセットにおける2次元スパースオブジェクトクエリとセグメンテーションの実験では、SLGaussianは、選択したIoU、Localization Accuracy、mIoUの既存のメソッドよりも優れている。
さらに,本モデルでは,30秒以内のシーン推論と1クエリあたり0.011秒のオープン語彙クエリを実現している。
関連論文リスト
- LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image [72.14973729674995]
現在の3D認識手法、特に小さなモデルでは、論理的推論、質問応答、オープンシナリオカテゴリの処理に苦労している。
空間的特徴抽出のための空間的局所特徴抽出法,精密な幾何回帰のための3次元問合せ情報復号法,カメラ焦点長変動に対する幾何学投影に基づく3次元推論を提案する。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation [91.40798599544136]
高速かつ高精度なオープン語彙型3Dインスタンスセグメンテーション手法Open-YOLO 3Dを提案する。
オープンな3Dインスタンスセグメンテーションのために、マルチビューRGB画像からの2Dオブジェクト検出のみを効果的に活用する。
テキストプロンプトと3Dマスクとのマッチング性能は、2Dオブジェクト検出器でより高速に実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2024-06-04T17:59:31Z) - GOI: Find 3D Gaussians of Interest with an Optimizable Open-vocabulary Semantic-space Hyperplane [53.388937705785025]
3Dオープンボキャブラリのシーン理解は、拡張現実とロボット応用の推進に不可欠である。
GOIは2次元視覚言語基礎モデルから3次元ガウススプラッティング(3DGS)に意味的特徴を統合するフレームワークである。
提案手法では,特徴空間内の超平面分割として特徴選択処理を扱い,クエリに関連性の高い特徴のみを保持する。
論文 参考訳(メタデータ) (2024-05-27T18:57:18Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
視覚言語ナビゲーション(VLN)は、視覚的な観察と自然言語の指示に基づいて、エージェントが3D環境をナビゲートする必要がある。
本研究では,物理世界を3次元構造細胞にボクセル化するボリューム環境表現(VER)を提案する。
VERは3D占有率、3D部屋レイアウト、および3Dバウンディングボックスを共同で予測する。
論文 参考訳(メタデータ) (2024-03-21T06:14:46Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - Light3DPose: Real-time Multi-Person 3D PoseEstimation from Multiple
Views [5.510992382274774]
いくつかのキャリブレーションされたカメラビューから複数の人物の3次元ポーズ推定を行う手法を提案する。
我々のアーキテクチャは、2次元ポーズ推定器のバックボーンから特徴マップを3次元シーンの包括的表現に集約する。
提案手法は本質的に効率的であり, 純粋なボトムアップ手法として, 現場の人数から計算的に独立している。
論文 参考訳(メタデータ) (2020-04-06T14:12:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。