論文の概要: SuperCode: Sustainability PER AI-driven CO-DEsign
- arxiv url: http://arxiv.org/abs/2412.08490v1
- Date: Wed, 11 Dec 2024 15:54:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:01:32.623517
- Title: SuperCode: Sustainability PER AI-driven CO-DEsign
- Title(参考訳): SuperCode: 持続可能性 PER AI駆動のCO-Design
- Authors: P. Chris Broekema, Rob V. van Nieuwpoort,
- Abstract要約: 本稿では,ChatGPTのような大規模言語モデルを用いた汎用AI駆動型協調設計手法を提案する。
本稿では,2つの電波天文学的応用を用いて,サステナビリティを重要な性能指標として評価する方法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Currently, data-intensive scientific applications require vast amounts of compute resources to deliver world-leading science. The climate emergency has made it clear that unlimited use of resources (e.g., energy) for scientific discovery is no longer acceptable. Future computing hardware promises to be much more energy efficient, but without better optimized software this cannot reach its full potential. In this vision paper, we propose a generic AI-driven co-design methodology, using specialized Large Language Models (like ChatGPT), to effectively generate efficient code for emerging computing hardware. We describe how we will validate our methodology with two radio astronomy applications, with sustainability as the key performance indicator. This paper is a modified version of our accepted SuperCode project proposal. We present it here in this form to introduce the vision behind this project and to disseminate the work in the spirit of Open Science and transparency. An additional aim is to collect feedback, invite potential collaboration partners and use-cases to join the project.
- Abstract(参考訳): 現在、データ集約的な科学応用は、世界主導の科学を提供するために膨大な量の計算資源を必要とする。
気候非常事態により、科学的な発見に資源(例えばエネルギー)を無制限に使用することはもはや容認できないことが明らかになった。
将来のコンピューティングハードウェアは、ずっとエネルギー効率が良いと約束するが、最適化されたソフトウェアがなければ、その潜在能力を最大限に発揮できない。
本稿では,ChatGPTのような特殊言語モデルを用いた汎用AI駆動型協調設計手法を提案する。
本稿では,2つの電波天文学的応用を用いて,サステナビリティを重要な性能指標として評価する方法について述べる。
この論文は、我々が受け入れたSuperCodeプロジェクト提案の修正版です。
私たちは、このプロジェクトの背後にあるビジョンを導入し、オープンサイエンスと透明性の精神の中で仕事を広めるために、この形式でそれを提示します。
もうひとつの目的は、フィードバックの収集、潜在的なコラボレーションパートナーの招待、そしてプロジェクトに参加するためのユースケースである。
関連論文リスト
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - Large Language Models for Energy-Efficient Code: Emerging Results and Future Directions [2.848398051763324]
エネルギー効率向上のための符号として,大規模言語モデル (LLM) の新たな適用法を提案する。
我々はプロトタイプを記述し評価し、我々のシステムでは、コンパイラの最適化だけで最大2倍のエネルギー効率を向上できる6つの小さなプログラムを探索した。
論文 参考訳(メタデータ) (2024-10-11T20:35:40Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
我々は,Multi-Aspect Summarization of ScientificAspectsに関する総合テキストデータセットであるMASSWを紹介する。
MASSWには過去50年間にわたる17の主要なコンピュータサイエンスカンファレンスから152,000以上の査読論文が含まれている。
我々は、この新しいデータセットを用いてベンチマーク可能な、複数の新しい機械学習タスクを通じて、MASSWの有用性を実証する。
論文 参考訳(メタデータ) (2024-06-10T15:19:09Z) - The Future of Scientific Publishing: Automated Article Generation [0.0]
本研究では,Python コードからの学術論文の自動生成を目的とした,大規模言語モデル(LLM)プロンプトを活用した新しいソフトウェアツールを提案する。
Pythonは基本的な概念実証として機能するが、基盤となる方法論とフレームワークは、さまざまなGitHubリポジトリにまたがる適応性を示している。
この開発は高度な言語モデルエージェントに頼らずに達成され、一貫性と総合的な学術的コンテンツの自動生成において高い忠実性を確保した。
論文 参考訳(メタデータ) (2024-04-11T16:47:02Z) - Learn to Code Sustainably: An Empirical Study on LLM-based Green Code
Generation [7.8273713434806345]
生成型商用AI言語モデルにより生成された自動生成符号の持続可能性を評価する。
3つのAI言語モデルによって生成された人為的なコードとコードのパフォーマンスとグリーンキャパシティを比較した。
論文 参考訳(メタデータ) (2024-03-05T22:12:01Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNaはオープンソースのソフトウェア開発アシスタントだ。
ソフトウェア工学の分野のための高品質な命令ベースのデータを生成する。
オープンソースの基盤モデルであるLLaMAを強化するためにパラメータ効率のよい微調整アプローチを採用している。
論文 参考訳(メタデータ) (2023-08-25T14:56:21Z) - A Survey on Green Deep Learning [25.71572024291251]
本稿では,グリーンディープラーニング技術の発展を体系的にレビューすることに焦点を当てる。
提案手法は,(1)コンパクトネットワーク,(2)エネルギー効率のトレーニング戦略,(3)エネルギー効率の推論アプローチ,(4)データ利用率の4つのカテゴリに分類される。
論文 参考訳(メタデータ) (2021-11-08T16:55:03Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。