論文の概要: LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application
- arxiv url: http://arxiv.org/abs/2405.03988v2
- Date: Tue, 10 Dec 2024 07:40:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:34:13.792990
- Title: LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application
- Title(参考訳): LEARN:大規模言語モデルから実践的産業応用のための勧告への知識適応
- Authors: Jian Jia, Yipei Wang, Yan Li, Honggang Chen, Xuehan Bai, Zhaocheng Liu, Jian Liang, Quan Chen, Han Li, Peng Jiang, Kun Gai,
- Abstract要約: Llm-driven knowlEdge Adaptive RecommeNdation (LEARN)フレームワークは、オープンワールドの知識と協調的な知識をシナジする。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
- 参考スコア(独自算出の注目度): 54.984348122105516
- License:
- Abstract: Contemporary recommendation systems predominantly rely on ID embedding to capture latent associations among users and items. However, this approach overlooks the wealth of semantic information embedded within textual descriptions of items, leading to suboptimal performance and poor generalizations. Leveraging the capability of large language models to comprehend and reason about textual content presents a promising avenue for advancing recommendation systems. To achieve this, we propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge. We address computational complexity concerns by utilizing pretrained LLMs as item encoders and freezing LLM parameters to avoid catastrophic forgetting and preserve open-world knowledge. To bridge the gap between the open-world and collaborative domains, we design a twin-tower structure supervised by the recommendation task and tailored for practical industrial application. Through experiments on the real large-scale industrial dataset and online A/B tests, we demonstrate the efficacy of our approach in industry application. We also achieve state-of-the-art performance on six Amazon Review datasets to verify the superiority of our method.
- Abstract(参考訳): 現代のレコメンデーションシステムは、主にユーザとアイテム間の潜伏関係をキャプチャするためにID埋め込みに依存している。
しかし,本手法は,項目のテキスト記述に埋め込まれた意味情報の豊富さを克服し,準最適性能と一般化の低さをもたらす。
文章の内容の理解と推論に大規模言語モデルの能力を活用することは、推薦システムの進歩に有望な道のりを示す。
そこで我々は,Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
我々は,事前学習したLLMをアイテムエンコーダとして利用し,LLMパラメータを凍結することにより,破滅的な忘れ込みを回避し,オープンワールドの知識を保存し,計算複雑性の懸念に対処する。
オープンワールドとコラボレーティブドメインのギャップを埋めるために、推奨タスクによって監督されるツイントウ構造を設計し、実用的な産業用途に適合させる。
実大規模産業データセットとオンラインA/Bテストの実験を通じて、産業応用における我々のアプローチの有効性を実証する。
また、6つのAmazon Reviewデータセット上での最先端のパフォーマンスも達成し、その方法の優位性を検証する。
関連論文リスト
- Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
大規模言語モデル(LLM)からユーザとアイテムに関する2種類の外部知識を取得するためのREKIを提案する。
個別の知識抽出と個別の知識抽出を,異なるシナリオのスケールに合わせて開発し,オフラインのリソース消費を効果的に削減する。
実験によると、REKIは最先端のベースラインより優れており、多くの推奨アルゴリズムやタスクと互換性がある。
論文 参考訳(メタデータ) (2024-08-20T03:45:24Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System [19.8986219047121]
協調フィルタリング推薦システム (CF-RecSys) は, ソーシャルメディアやeコマースプラットフォーム上でのユーザエクスペリエンス向上に成功している。
近年の戦略は、事前訓練されたモダリティエンコーダと大規模言語モデルに基づくユーザ/イテムのモダリティ情報の活用に重点を置いている。
コールドシナリオだけでなく、ウォームシナリオにおいても優れたA-LLMRecと呼ばれる全周LCMベースのレコメンダシステムを提案する。
論文 参考訳(メタデータ) (2024-04-17T13:03:07Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
大規模言語モデル(LLM)は、言語理解と生成の基本的なタスクにおいて優れた機能を持つ。
機能エンコーダとしてLLMを用いたユーザとアイテムの表現を学習するための代表的なアプローチを提案する。
次に、協調フィルタリング強化レコメンデーションシステムのためのLLM技術の最新技術について概説した。
論文 参考訳(メタデータ) (2024-03-05T08:31:00Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
我々は,協調情報をLLMにシームレスに組み込んでレコメンデーションを行う,革新的なLLMRec手法であるCoLLMを紹介する。
CoLLMは、外部の伝統的なモデルを通して協調情報をキャプチャし、LLMの入力トークン埋め込み空間にマッピングする。
大規模な実験により、CoLLMはLLMに協調情報を包括的に統合し、レコメンデーション性能が向上することが確認された。
論文 参考訳(メタデータ) (2023-10-30T12:25:00Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - ONCE: Boosting Content-based Recommendation with Both Open- and
Closed-source Large Language Models [39.193602991105]
大規模言語モデル(LLM)は、事前学習から深い意味理解と広範な知識を持っている。
我々は、コンテンツベースのレコメンデーションを強化するために、オープンソースLLMとクローズドソースLLMの両方を活用する可能性を探る。
既存の最先端レコメンデーションモデルと比較して, 最大19.32%の大幅な改善が見られた。
論文 参考訳(メタデータ) (2023-05-11T04:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。