論文の概要: Reducing Popularity Influence by Addressing Position Bias
- arxiv url: http://arxiv.org/abs/2412.08780v1
- Date: Wed, 11 Dec 2024 21:16:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:55.188852
- Title: Reducing Popularity Influence by Addressing Position Bias
- Title(参考訳): 位置バイアスによる住民影響の低減
- Authors: Andrii Dzhoha, Alexey Kurennoy, Vladimir Vlasov, Marjan Celikik,
- Abstract要約: 位置偏差は,フィードバックループを通じて位置偏差によって引き起こされる項目の人気を効果的に低減できることを示す。
ユーザのエンゲージメントや財務指標を損なうことなく、位置偏りがアソシエーション利用を著しく改善できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Position bias poses a persistent challenge in recommender systems, with much of the existing research focusing on refining ranking relevance and driving user engagement. However, in practical applications, the mitigation of position bias does not always result in detectable short-term improvements in ranking relevance. This paper provides an alternative, practically useful view of what position bias reduction methods can achieve. It demonstrates that position debiasing can spread visibility and interactions more evenly across the assortment, effectively reducing a skew in the popularity of items induced by the position bias through a feedback loop. We offer an explanation of how position bias affects item popularity. This includes an illustrative model of the item popularity histogram and the effect of the position bias on its skewness. Through offline and online experiments on our large-scale e-commerce platform, we show that position debiasing can significantly improve assortment utilization, without any degradation in user engagement or financial metrics. This makes the ranking fairer and helps attract more partners or content providers, benefiting the customers and the business in the long term.
- Abstract(参考訳): 位置バイアスはリコメンデータシステムにおいて永続的な課題となり、既存の研究の多くはランキングの関連性の改善とユーザエンゲージメントの推進に重点を置いている。
しかし、実際的な応用では、位置バイアスの緩和は必ずしも、ランキングの関連性において短期的に検出可能な改善をもたらすとは限らない。
本稿では, 位置バイアス低減法が実現可能な代替的, 実用的な視点を提供する。
位置偏差が視界や相互作用をより均等に広げ、フィードバックループを通じて位置偏差によって引き起こされるアイテムの人気を効果的に減少させることが示される。
位置バイアスがアイテムの人気にどのように影響するかを説明する。
これには、アイテム人気ヒストグラムのイラストレーションモデルと、位置バイアスがその歪に及ぼす影響が含まれる。
当社の大規模なeコマースプラットフォーム上でのオフラインおよびオンライン実験を通じて、ユーザのエンゲージメントや財務指標を損なうことなく、位置情報のデバイアスがアソシエーション利用を大幅に改善できることを示した。
これにより、ランキングがより公平になり、より多くのパートナーやコンテンツプロバイダを惹きつけ、長期的には顧客とビジネスに利益をもたらす。
関連論文リスト
- Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias [34.006766098392525]
協調フィルタリング(CF)は通常、現実のデータセットにおけるアイテムの不均一な分布のため、人気バイアスの課題に悩まされる。
このバイアスは、人気アイテムと不人気アイテムの間にかなりの精度のギャップをもたらす。
本稿では,2つの課題に対処するために,PAAC(Popularity-Aware Alignment and Contrast)を提案する。
論文 参考訳(メタデータ) (2024-05-31T09:14:48Z) - A First Look at Selection Bias in Preference Elicitation for Recommendation [64.44255178199846]
選好選好における選好バイアスの影響について検討した。
大きなハードルは、好みの推論インタラクションを持つ公開データセットがないことです。
本稿では,トピックに基づく選好提案プロセスのシミュレーションを提案する。
論文 参考訳(メタデータ) (2024-05-01T14:56:56Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Test Time Embedding Normalization for Popularity Bias Mitigation [6.145760252113906]
人気バイアスはレコメンデーションシステムの分野で広く問題となっている。
本稿では,人気バイアスを軽減するための簡易かつ効果的な戦略として,'Test Time Embedding Normalization'を提案する。
論文 参考訳(メタデータ) (2023-08-22T08:57:44Z) - Ranking with Popularity Bias: User Welfare under Self-Amplification
Dynamics [19.59766711993837]
本稿では,アイテムの人気度,商品品質,位置バイアスがユーザの選択に影響を与える一般的なメカニズムを提案し,理論的に分析する。
人気度の高い推薦者は,商品の品質と人気を混同することで,線形後悔を誘発することを示す。
論文 参考訳(メタデータ) (2023-05-24T22:38:19Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
アンバイアスド・ラーニング・トゥ・ランク(ULTR)アルゴリズムは、バイアスド・クリックデータを用いたアンバイアスド・ランキングモデルを学ぶために提案される。
本稿では,BALというアルゴリズムをランク付けするバイアス非依存学習を提案する。
実世界のデータセットによる実験結果から,BALの有効性が検証された。
論文 参考訳(メタデータ) (2022-10-19T16:53:08Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
アルゴリズムをランク付けする偏見のない学習は、候補をアピールし、既に単一の分類ラベルを持つ多くのアプリケーションに適用されている。
本稿では,この課題に対処するための新しい非バイアス付きLTRアルゴリズムを提案する。
パブリックベンチマークデータセットと内部ライブトラフィックを用いた実験結果から,分類ラベルと連続ラベルのいずれにおいても提案手法の優れた結果が得られた。
論文 参考訳(メタデータ) (2021-11-25T06:04:59Z) - Incentives for Item Duplication under Fair Ranking Policies [69.14168955766847]
重複が存在する場合の様々な公正ランキングポリシーの振る舞いについて検討する。
適合性にのみ焦点を絞った政策よりも、重複を動機付ける可能性を秘めているため、公正を意識したランキングポリシーは多様性と矛盾する可能性がある。
論文 参考訳(メタデータ) (2021-10-29T11:11:15Z) - User-centered Evaluation of Popularity Bias in Recommender Systems [4.30484058393522]
推薦とランク付けシステムは人気バイアスに悩まされ、アルゴリズムは人気アイテムを数種類選んで、他の項目の大半を下書きする傾向にある。
本稿では,これらのアルゴリズムをユーザの視点から評価したい場合に,人気バイアス軽減度を評価するための既存の指標の限界を示す。
ユーザ中心の視点から,人気バイアスを緩和する効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-10T22:12:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。