論文の概要: Stochastic Learning of Non-Conjugate Variational Posterior for Image Classification
- arxiv url: http://arxiv.org/abs/2412.08951v1
- Date: Thu, 12 Dec 2024 05:33:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:11.887583
- Title: Stochastic Learning of Non-Conjugate Variational Posterior for Image Classification
- Title(参考訳): 画像分類のための非共役変分位器の確率的学習
- Authors: Kart-Leong Lim,
- Abstract要約: 大規模ベイズ非パラメトリック(BNP)学習者は、大きなクラス番号と大きなトレーニングサイズを持つデータセットを分別コストで処理できる。
より難しい問題は、非共役後部における大規模学習を検討することである。
我々は,最近提案された変分最大化学習(VMM)に基づく新しい手法を開発し,非共役後部における大規模学習を実現する。
- 参考スコア(独自算出の注目度): 0.65268245109828
- License:
- Abstract: Large scale Bayesian nonparametrics (BNP) learner such as stochastic variational inference (SVI) can handle datasets with large class number and large training size at fractional cost. Like its predecessor, SVI rely on the assumption of conjugate variational posterior to approximate the true posterior. A more challenging problem is to consider large scale learning on non-conjugate posterior. Recent works in this direction are mostly associated with using Monte Carlo methods for approximating the learner. However, these works are usually demonstrated on non-BNP related task and less complex models such as logistic regression, due to higher computational complexity. In order to overcome the issue faced by SVI, we develop a novel approach based on the recently proposed variational maximization-maximization (VMM) learner to allow large scale learning on non-conjugate posterior. Unlike SVI, our VMM learner does not require closed-form expression for the variational posterior expectatations. Our only requirement is that the variational posterior is differentiable. In order to ensure convergence in stochastic settings, SVI rely on decaying step-sizes to slow its learning. Inspired by SVI and Adam, we propose the novel use of decaying step-sizes on both gradient and ascent direction in our VMM to significantly improve its learning. We show that our proposed methods is compatible with ResNet features when applied to large class number datasets such as MIT67 and SUN397. Finally, we compare our proposed learner with several recent works such as deep clustering algorithms and showed we were able to produce on par or outperform the state-of-the-art methods in terms of clustering measures.
- Abstract(参考訳): 確率的変分推論(SVI)のような大規模ベイズ非パラメトリックス(BNP)学習者は、大きなクラス番号と大きなトレーニングサイズを持つデータセットを分別コストで処理することができる。
前者と同様に、SVIは真の後部を近似するために共役変分後部の仮定に依存する。
より難しい問題は、非共役後部における大規模学習を検討することである。
この方向の最近の研究は、主にモンテカルロ法による学習者の近似に関係している。
しかしながら、これらの研究は通常、非BNP関連のタスクやロジスティック回帰のようなより複雑なモデルで示される。
SVIの課題を克服するため,最近提案された変分最大化学習(VMM)に基づく新しい手法を開発し,非共役後部における大規模学習を実現する。
SVIとは異なり、我々のVMM学習者は変分後述の予測に対してクローズドフォーム表現を必要としない。
我々の唯一の要件は変分後部が微分可能であることである。
確率的セッティングにおける収束を保証するため、SVIは学習を遅くするために減衰するステップサイズに依存している。
SVIとAdamに触発されて、VMMの勾配と上昇方向の両方で減衰するステップサイズを新しい利用法を提案し、その学習を著しく改善する。
提案手法は,MIT67 や SUN397 などの大規模クラス数データセットに適用した場合,ResNet の機能と互換性があることが示されている。
最後に,提案した学習者と,深層クラスタリングアルゴリズムなどの最近のいくつかの研究を比較し,クラスタリング対策の観点から,最先端の手法を同等あるいは優れることを示す。
関連論文リスト
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - PAVI: Plate-Amortized Variational Inference [55.975832957404556]
数百人の被験者のコホート上で何百万もの計測が行われる大集団研究において、推論は困難である。
この大きな濃度は、オフザシェルフ変分推論(VI)を計算的に非現実的である。
本研究では,大集団研究に効率よく取り組む構造VIファミリーを設計する。
論文 参考訳(メタデータ) (2023-08-30T13:22:20Z) - Rényi Divergence Deep Mutual Learning [3.682680183777648]
本稿では,Deep Learning Mutual (DML) を,単純かつ効果的な計算パラダイムとして再考する。
より柔軟で限定的なKL発散の代わりにR'enyi発散を提案する。
我々の経験的結果は、DMLとR'enyiの発散を併用した利点を示し、モデル一般化のさらなる改善につながった。
論文 参考訳(メタデータ) (2022-09-13T04:58:35Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
複素モデルにおけるベイズ学習に適した最適化アルゴリズムを開発した。
我々のアプローチは、モデル固有導出に制限のある効率的なトレーニングのための一般的なブラックボックスフレームワーク内の自然な勾配更新に依存している。
論文 参考訳(メタデータ) (2022-05-23T18:54:27Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
ミニバッチ学習が可能なBayesianVMモデルの2倍の定式化について検討する。
このフレームワークが、異なる潜在変数の定式化とどのように互換性を持つかを示し、モデルの組を比較する実験を行う。
我々は、膨大な量の欠落データの存在下でのトレーニングと、高忠実度再構築の実施を実証する。
論文 参考訳(メタデータ) (2022-02-25T21:21:51Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
ペア比較の計算を必要とせず,コントラスト的手法を生かしたオンラインアルゴリズムSwaVを提案する。
本手法では,クラスタ割り当て間の一貫性を保ちながら,同時にデータをクラスタ化する。
我々の方法は大規模で小さなバッチで訓練でき、無制限のデータにスケールできる。
論文 参考訳(メタデータ) (2020-06-17T14:00:42Z) - A Convolutional Deep Markov Model for Unsupervised Speech Representation
Learning [32.59760685342343]
確率的潜在変数モデルは、音声からの言語表現学習のための自己教師付き学習アプローチの代替を提供する。
本研究では,深いニューラルネットワークによってモデル化された非線形放出と遷移関数を持つガウス状態空間モデルであるConvDMMを提案する。
大規模音声データセット(LibriSpeech)で訓練すると、ConvDMMは複数の自己教師付き特徴抽出法よりもはるかに優れた特徴を生成する。
論文 参考訳(メタデータ) (2020-06-03T21:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。