論文の概要: Predicting Emergency Department Visits for Patients with Type II Diabetes
- arxiv url: http://arxiv.org/abs/2412.08984v1
- Date: Thu, 12 Dec 2024 06:37:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:00.068330
- Title: Predicting Emergency Department Visits for Patients with Type II Diabetes
- Title(参考訳): II型糖尿病患者の救急部門訪問予測
- Authors: Javad M Alizadeh, Jay S Patel, Gabriel Tajeu, Yuzhou Chen, Ilene L Hollin. Mukesh K Patel, Junchao Fei, Huanmei Wu,
- Abstract要約: 3000万人以上のアメリカ人がII型糖尿病(T2D)に罹患している。
本研究の目的は、機械学習(ML)技術を用いて、T2D患者の救急部門(ED)訪問を推定する予測モデルの開発と評価である。
- 参考スコア(独自算出の注目度): 10.522637839993807
- License:
- Abstract: Over 30 million Americans are affected by Type II diabetes (T2D), a treatable condition with significant health risks. This study aims to develop and validate predictive models using machine learning (ML) techniques to estimate emergency department (ED) visits among patients with T2D. Data for these patients was obtained from the HealthShare Exchange (HSX), focusing on demographic details, diagnoses, and vital signs. Our sample contained 34,151 patients diagnosed with T2D which resulted in 703,065 visits overall between 2017 and 2021. A workflow integrated EMR data with SDoH for ML predictions. A total of 87 out of 2,555 features were selected for model construction. Various machine learning algorithms, including CatBoost, Ensemble Learning, K-nearest Neighbors (KNN), Support Vector Classification (SVC), Random Forest, and Extreme Gradient Boosting (XGBoost), were employed with tenfold cross-validation to predict whether a patient is at risk of an ED visit. The ROC curves for Random Forest, XGBoost, Ensemble Learning, CatBoost, KNN, and SVC, were 0.82, 0.82, 0.82, 0.81, 0.72, 0.68, respectively. Ensemble Learning and Random Forest models demonstrated superior predictive performance in terms of discrimination, calibration, and clinical applicability. These models are reliable tools for predicting risk of ED visits among patients with T2D. They can estimate future ED demand and assist clinicians in identifying critical factors associated with ED utilization, enabling early interventions to reduce such visits. The top five important features were age, the difference between visitation gaps, visitation gaps, R10 or abdominal and pelvic pain, and the Index of Concentration at the Extremes (ICE) for income.
- Abstract(参考訳): 3000万人以上のアメリカ人がII型糖尿病(T2D)に罹患している。
本研究の目的は、機械学習(ML)技術を用いて、T2D患者の救急部門(ED)訪問を推定する予測モデルの開発と評価である。
これらの患者のデータはHealthShare Exchange(HSX)から取得され、人口統計の詳細、診断、およびバイタルサインに焦点が当てられた。
対象はT2Dと診断された34,151例で,2017年から2021年の間に703,065回来院した。
ワークフローは、ML予測のためのEMRデータをSDoHと統合する。
モデル構築には2,555種類のうち87種類が選択された。
CatBoost、Ensemble Learning、K-nearest Neighbors(KNN)、SVC(Support Vector Classification)、Random Forest、Extreme Gradient Boosting(XGBoost)など、さまざまな機械学習アルゴリズムを使用して、患者がED訪問のリスクがあるかどうかを予測する。
ランダムフォレスト, XGBoost, Ensemble Learning, CatBoost, KNN, SVC の ROC 曲線はそれぞれ 0.82, 0.82, 0.82, 0.81, 0.72, 0.68 であった。
アンサンブル学習モデルとランダムフォレストモデルでは, 識別, 校正, 臨床応用性において優れた予測性能を示した。
これらのモデルは、T2D患者のED訪問のリスクを予測するための信頼性の高いツールである。
彼らは将来のED需要を見積もり、臨床医がED利用に関連する重要な要因を特定するのを手助けし、早期の介入によってそのような訪問を減らすことができる。
主な特徴は, 年齢, 訪問ギャップ, 訪問ギャップ, R10, 腹部, 骨盤痛の差, 収入に対する極端濃度指数 (ICE) であった。
関連論文リスト
- Incorporating Anatomical Awareness for Enhanced Generalizability and Progression Prediction in Deep Learning-Based Radiographic Sacroiliitis Detection [0.8248058061511542]
本研究の目的は, 深層学習モデルに解剖学的認識を取り入れることで, 一般化性を高め, 疾患進行の予測を可能にするかを検討することである。
モデルの性能は, 受信機動作特性曲線(AUC)下の領域, 精度, 感度, 特異性を用いて比較した。
論文 参考訳(メタデータ) (2024-05-12T20:02:25Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
タスクに対する入力特徴の臨床的関連性を解釈する,解釈可能なグラフ学習モデルを提案する。
臨床シナリオでは、そのようなモデルは、臨床専門家が診断および治療計画のためのより良い意思決定を支援することができる。
本研究では,Tadpoleの平均精度が3.2%,UKBBジェンダーが1.6%,UKBB年齢予測タスクが2%と,比較方法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-29T13:04:02Z) - Predicting special care during the COVID-19 pandemic: A machine learning
approach [0.0]
本稿では,患者が特別なケアを必要としているかどうかを予測するため,統計と機械学習に基づく分析手法を提案する。
また、患者がそのようなケアを受ける日数も予測する。
分析的アプローチは、他の疾患で使用することができ、病院の容量を計画するのに役立つ。
論文 参考訳(メタデータ) (2020-11-06T00:18:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Predicting risk of late age-related macular degeneration using deep
learning [12.137730470081843]
年齢関連黄斑変性症(AMD)は2040年までに世界中で約2億8800万人に影響を与える。
深層学習は、カラーファンドス写真を用いたAMDの診断・スクリーニングにおいて有望であることを示している。
我々は,3,298人の参加者を用いて,深層学習と生存分析が後期AMDの進行確率を予測することを実証した。
論文 参考訳(メタデータ) (2020-07-19T01:32:09Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。