A Context-Enhanced Framework for Sequential Graph Reasoning
- URL: http://arxiv.org/abs/2412.09056v1
- Date: Thu, 12 Dec 2024 08:27:51 GMT
- Title: A Context-Enhanced Framework for Sequential Graph Reasoning
- Authors: Shuo Shi, Chao Peng, Chenyang Xu, Zhengfeng Yang,
- Abstract summary: The paper studies sequential reasoning over graph-structured data, which stands as a fundamental task in various trending fields.
We generalize the existing neural architectures and propose a context-enhanced framework.
We show that the framework can effectively integrate with the existing methods, enhancing their reasoning abilities.
- Score: 6.207627263146009
- License:
- Abstract: The paper studies sequential reasoning over graph-structured data, which stands as a fundamental task in various trending fields like automated math problem solving and neural graph algorithm learning, attracting a lot of research interest. Simultaneously managing both sequential and graph-structured information in such tasks presents a notable challenge. Over recent years, many neural architectures in the literature have emerged to tackle the issue. In this work, we generalize the existing architectures and propose a context-enhanced framework. The crucial innovation is that the reasoning of each step does not only rely on the outcome of the preceding step but also leverages the aggregation of information from more historical outcomes. The idea stems from our observation that in sequential graph reasoning, each step's outcome has a much stronger inner connection with each other compared to traditional seq-to-seq tasks. We show that the framework can effectively integrate with the existing methods, enhancing their reasoning abilities. Empirical evaluations are conducted on the challenging CLRS Reasoning Benchmark, and the results demonstrate that the proposed framework significantly improves the performance of existing architectures, yielding state-of-the-art results across the majority of the datasets within the benchmark.
Related papers
- Advanced RAG Models with Graph Structures: Optimizing Complex Knowledge Reasoning and Text Generation [7.3491970177535]
This study proposes a scheme to process graph structure data by combining graph neural network (GNN)
The results show that the graph-based RAG model proposed in this paper is superior to the traditional generation model in terms of quality, knowledge consistency, and reasoning ability.
arXiv Detail & Related papers (2024-11-06T00:23:55Z) - Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
We introduce SCORE, a unified graph reasoning framework that effectively generalizes diverse graph tasks using zero-shot learning.
We evaluate SCORE using 38 diverse graph datasets, covering node-level, link-level, and graph-level tasks across multiple domains.
arXiv Detail & Related papers (2024-10-16T14:26:08Z) - Transformers Utilization in Chart Understanding: A Review of Recent Advances & Future Trends [1.124958340749622]
This paper reviews prominent research in Understanding (CU)
It focuses on State-of-The-Art (SoTA) frameworks that employ transformers within End-to-End (E2E) solutions.
This article identifies key challenges and outlines promising future directions for advancing CU solutions.
arXiv Detail & Related papers (2024-10-05T16:26:44Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - Unsupervised Graph Neural Architecture Search with Disentangled
Self-supervision [51.88848982611515]
Unsupervised graph neural architecture search remains unexplored in the literature.
We propose a novel Disentangled Self-supervised Graph Neural Architecture Search model.
Our model is able to achieve state-of-the-art performance against several baseline methods in an unsupervised manner.
arXiv Detail & Related papers (2024-03-08T05:23:55Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Graph Collaborative Reasoning [18.45161138837384]
Graph Collaborative Reasoning (GCR) can use the neighbor link information for relational reasoning on graphs from logical reasoning perspectives.
We provide a simple approach to translate a graph structure into logical expressions, so that the link prediction task can be converted into a neural logic reasoning problem.
To show the effectiveness of our work, we conduct experiments on graph-related tasks such as link prediction and recommendation based on commonly used benchmark datasets.
arXiv Detail & Related papers (2021-12-27T14:27:58Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.