論文の概要: Understanding Opportunities and Risks of Synthetic Relationships: Leveraging the Power of Longitudinal Research with Customised AI Tools
- arxiv url: http://arxiv.org/abs/2412.09086v1
- Date: Thu, 12 Dec 2024 09:13:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:29.577841
- Title: Understanding Opportunities and Risks of Synthetic Relationships: Leveraging the Power of Longitudinal Research with Customised AI Tools
- Title(参考訳): シンセティックリレーションの機会とリスクを理解する: カスタマイズされたAIツールによる縦断的研究の力を活用する
- Authors: Alfio Ventura, Nils Köbis,
- Abstract要約: 我々は,合成関係の機会とリスクを探索するために,AIツールをカスタマイズした縦型行動研究の利点について論じる。
これらの関係は、健康、教育、職場を改善する可能性があるが、微妙な操作やプライバシー、自律性への懸念も引き起こす。
我々は,詳細な行動情報と自己報告データを統合可能な,自己組織化されたAIエージェントを用いた縦型研究設計を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This position paper discusses the benefits of longitudinal behavioural research with customised AI tools for exploring the opportunities and risks of synthetic relationships. Synthetic relationships are defined as "continuing associations between humans and AI tools that interact with one another wherein the AI tool(s) influence(s) humans' thoughts, feelings, and/or actions." (Starke et al., 2024). These relationships can potentially improve health, education, and the workplace, but they also bring the risk of subtle manipulation and privacy and autonomy concerns. To harness the opportunities of synthetic relationships and mitigate their risks, we outline a methodological approach that complements existing findings. We propose longitudinal research designs with self-assembled AI agents that enable the integration of detailed behavioural and self-reported data.
- Abstract(参考訳): 本稿では,AIツールのカスタマイズによる縦断的行動研究のメリットを論じ,合成関係の機会とリスクを探究する。
合成関係は「人間の思考、感情、行動に影響を与えるAIツールが相互に相互作用する人間とAIツールの関連を継続する」と定義されている(Starke et al , 2024)。
これらの関係は、健康、教育、職場を改善する可能性があるが、微妙な操作やプライバシー、自律性への懸念も引き起こす。
合成関係の機会を利用してリスクを軽減するため,既存の知見を補完する方法論的アプローチを概説する。
我々は,詳細な行動情報と自己報告データを統合可能な,自己組織化されたAIエージェントを用いた縦型研究設計を提案する。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
本稿では,人工知能(AI)の能力を活用したソフトウェア工学研究における定性データ収集手法を提案する。
定性的データの代替源としてAI生成合成テキストの可能性を探る。
観察研究とユーザ評価における人間の行動のエミュレートを目的とした新しい基礎モデルの開発について論じる。
論文 参考訳(メタデータ) (2023-11-18T14:05:52Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Understanding the Application of Utility Theory in Robotics and
Artificial Intelligence: A Survey [5.168741399695988]
このユーティリティは、経済学、ゲーム理論、およびオペレーション研究において、ロボティクスとAI分野においても統一された概念である。
本稿では,エージェントのインタラクション間の相互関係を記述し,評価するためのユーティリティ指向の要求パラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-15T18:55:48Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
我々は、GHAI(Generalized Human-Aware Interaction)と呼ばれる、ヒューマン・アウェア・AIインタラクション・スキームの極めて一般的なバージョンを導入する。
この新しいフレームワークによって、人間とAIのインタラクションの空間で達成されたさまざまな作業が捕捉され、これらの作業によって支えられる基本的な行動パターンが特定できるかどうかを確認します。
論文 参考訳(メタデータ) (2022-02-18T22:08:08Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Nine Potential Pitfalls when Designing Human-AI Co-Creative Systems [19.90876596716716]
このポジショニングペーパーは、ジェネレーションモデルによる人間-AI共創の実現に向けての潜在的な落とし穴を検討する。
それぞれの落とし穴を例で説明し、それに取り組むためのアイデアを提案します。
私たちは、共同創造的な相互作用における人間とAIの役割に関する批判的で建設的な議論に貢献したいと考えています。
論文 参考訳(メタデータ) (2021-04-01T09:27:30Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
現在の大きな成功にもかかわらず、ディープラーニングベースのAIシステムは、微妙な敵対的ノイズによって容易に騙されることを示した。
骨格に基づくヒトの相互作用のケーススタディに基づき、相互作用に対する新しい敵対的攻撃を提案する。
本研究では、安全クリティカルなアプリケーションにAIシステムをデプロイする際に慎重に対処する必要があるAIと人間との相互作用ループにおける潜在的なリスクを強調します。
論文 参考訳(メタデータ) (2021-01-17T16:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。