A Novel Ensemble-Based Deep Learning Model with Explainable AI for Accurate Kidney Disease Diagnosis
- URL: http://arxiv.org/abs/2412.09472v1
- Date: Thu, 12 Dec 2024 17:18:49 GMT
- Title: A Novel Ensemble-Based Deep Learning Model with Explainable AI for Accurate Kidney Disease Diagnosis
- Authors: Md. Arifuzzaman, Iftekhar Ahmed, Md. Jalal Uddin Chowdhury, Shadman Sakib, Mohammad Shoaib Rahman, Md. Ebrahim Hossain, Shakib Absar,
- Abstract summary: Chronic Kidney Disease (CKD) represents a significant global health challenge, characterized by the progressive decline in renal function.
Our study delves into the application of cutting-edge transfer learning models for the early detection of CKD.
- Score: 3.84521268332112
- License:
- Abstract: Chronic Kidney Disease (CKD) represents a significant global health challenge, characterized by the progressive decline in renal function, leading to the accumulation of waste products and disruptions in fluid balance within the body. Given its pervasive impact on public health, there is a pressing need for effective diagnostic tools to enable timely intervention. Our study delves into the application of cutting-edge transfer learning models for the early detection of CKD. Leveraging a comprehensive and publicly available dataset, we meticulously evaluate the performance of several state-of-the-art models, including EfficientNetV2, InceptionNetV2, MobileNetV2, and the Vision Transformer (ViT) technique. Remarkably, our analysis demonstrates superior accuracy rates, surpassing the 90% threshold with MobileNetV2 and achieving 91.5% accuracy with ViT. Moreover, to enhance predictive capabilities further, we integrate these individual methodologies through ensemble modeling, resulting in our ensemble model exhibiting a remarkable 96% accuracy in the early detection of CKD. This significant advancement holds immense promise for improving clinical outcomes and underscores the critical role of machine learning in addressing complex medical challenges.
Related papers
- Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.
Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.
We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - Efficient Precision Control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting [37.9434503914985]
A major challenge for machine learning is to control the precision of predictions while enabling a high recall.
We use a multiple testing procedure that gives an overperforming way to solve the standard Precision-Recall trade-off.
As it is model-agnostic, this contextual selection procedure paves the way to the development of a strategy that can improve the performance of any model without the need of retraining it.
arXiv Detail & Related papers (2025-01-23T19:04:47Z) - A CT Image Classification Network Framework for Lung Tumors Based on Pre-trained MobileNetV2 Model and Transfer learning, And Its Application and Market Analysis in the Medical field [0.8249694498830561]
This paper proposes a deep learning network framework based on the pre-trained MobileNetV2 model.
The model achieves an accuracy of 99.6% on the test set, with significant improvements in feature extraction.
The potential of AI to improve diagnostic accuracy, reduce medical costs, and promote precision medicine will have a profound impact on the future development of the healthcare industry.
arXiv Detail & Related papers (2025-01-09T06:22:50Z) - Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Clinical Pathology Analysis [34.199766079609795]
Pathological diagnosis is vital for determining disease characteristics, guiding treatment, and assessing prognosis.
Traditional pure vision models face challenges of redundant feature extraction.
Existing large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy.
We propose two innovative strategies: the mixed task-guided feature enhancement, and the prompt-guided detail feature completion.
arXiv Detail & Related papers (2024-12-12T18:07:23Z) - Integrating Deep Feature Extraction and Hybrid ResNet-DenseNet Model for Multi-Class Abnormality Detection in Endoscopic Images [0.9374652839580183]
The aim is to automate the identification of ten GI abnormality classes, including angioectasia, bleeding, and ulcers.
The proposed model achieves an overall accuracy of 94% across a well-structured dataset.
arXiv Detail & Related papers (2024-10-24T06:10:31Z) - MedDet: Generative Adversarial Distillation for Efficient Cervical Disc Herniation Detection [24.833129797776422]
Cervical disc herniation (CDH) is a prevalent musculoskeletal disorder that requires labor-intensive analysis from experts.
Despite advancements in automated detection of medical imaging, two significant challenges hinder the real-time application of these methods.
We introduce MedDet, which leverages the multi-teacher single-student knowledge distillation for model compression and efficiency.
Lastly, we conduct comprehensive experiments on the CDH-1848 dataset, achieving up to a 5% improvement in mAP compared to previous methods.
arXiv Detail & Related papers (2024-08-30T18:38:19Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Improving Medical Report Generation with Adapter Tuning and Knowledge
Enhancement in Vision-Language Foundation Models [26.146579369491718]
This study builds upon the state-of-the-art vision-language pre-training and fine-tuning approach, BLIP-2, to customize general large-scale foundation models.
Validation on the dataset of ImageCLEFmedical 2023 demonstrates our model's prowess, achieving the best-averaged results against several state-of-the-art methods.
arXiv Detail & Related papers (2023-12-07T01:01:45Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Transfer learning and Local interpretable model agnostic based visual
approach in Monkeypox Disease Detection and Classification: A Deep Learning
insights [0.0]
The recent development of Monkeypox disease poses a global pandemic threat when the world is still fighting Coronavirus Disease 2019 (COVID-19).
We have conducted two studies where we modified and tested six distinct deep learning models-VGG16, InceptionResNetV2, ResNet50, ResNet101, MobileNetV2, and VGG19-using transfer learning approaches.
Our preliminary computational results show that the proposed modified InceptionResNetV2 and MobileNetV2 models perform best by achieving an accuracy ranging from 93% to 99%.
arXiv Detail & Related papers (2022-11-01T18:07:34Z) - Predictive Analysis of Diabetic Retinopathy with Transfer Learning [0.0]
This paper studies the performance of CNN architectures for Diabetic Retinopathy Classification with the help of Transfer Learning.
The results indicate that Transfer Learning with ImageNet weights using VGG 16 model demonstrates the best classification performance with the best Accuracy of 95%.
arXiv Detail & Related papers (2020-11-08T18:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.