Omnidirectional shuttling to avoid valley excitations in Si/SiGe quantum wells
- URL: http://arxiv.org/abs/2412.09574v1
- Date: Thu, 12 Dec 2024 18:53:13 GMT
- Title: Omnidirectional shuttling to avoid valley excitations in Si/SiGe quantum wells
- Authors: Róbert Németh, Vatsal K. Bandaru, Pedro Alves, Merritt P. Losert, Emma Brann, Owen M. Eskandari, Hudaiba Soomro, Avani Vivrekar, M. A. Eriksson, Mark Friesen,
- Abstract summary: We propose a full qubit architecture based on 2D shuttling, which enables all-to-all connectivity within qubit plaquettes and high-fidelity communication between plaquettes.
- Score: 0.0
- License:
- Abstract: Conveyor-mode shuttling is a key approach for implementing intermediate-range coupling between electron-spin qubits in quantum dots. Initial shuttling results are encouraging; however, long shuttling trajectories are guaranteed to encounter regions of low conduction-band valley energy splittings, due to the presence of random-alloy disorder in Si/SiGe quantum wells. Here, we theoretically explore two schemes for avoiding valley-state excitations at these valley minima, by allowing the electrons to detour around them. The multichannel shuttling scheme allows electrons to tunnel between parallel channels, while a two-dimensional (2D) shuttler provides full omnidirectional control. Through simulations, we estimate shuttling fidelities for these two schemes, obtaining a clear preference for the 2D shuttler. Based on these encouraging results, we propose a full qubit architecture based on 2D shuttling, which enables all-to-all connectivity within qubit plaquettes and high-fidelity communication between plaquettes.
Related papers
- A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling [29.539407433267254]
We present a 2D array of silicon metal-oxide-semiconductor (MOS) quantum dots with tunable interdot coupling between all adjacent dots.
The device is characterized at 4.2 K, where we demonstrate the formation and isolation of double-dot and triple-dot configurations.
arXiv Detail & Related papers (2024-11-21T06:46:15Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Nonadiabatic quantum control of quantum dot arrays with fixed exchange
using Cartan decomposition [0.0]
In semiconductor spin qubits, shuttling of spin is a practical way to generate quantum operations between distant qubits.
We extend our previous results for double- and triple-dot systems, and describe a method for implementing spin shuttling in long chains of quantum dots in a nonadiabatic manner.
arXiv Detail & Related papers (2022-07-06T01:04:39Z) - Coherent Perfect Absorption in Tavis-Cummings Models [3.3726274202964635]
We study the conditions under which two laser fields can undergo Coherent Perfect Absorption (CPA)
We find that in the strong-coupling regime of cavity quantum electrodynamics, the strong DDI and the emitter-cavity detuning can act together to achieve the CPA.
Our CPA results are potentially applicable in building quantum memories that are an essential component in long-distance quantum networking.
arXiv Detail & Related papers (2021-08-12T18:39:13Z) - Conveyor-mode single-electron shuttling in Si/SiGe for a scalable
quantum computing architecture [0.0]
Small spin-qubit registers defined by single electrons confined in Si/SiGe quantum dots operate successfully.
Shuttling the qubit carrying electrons between registers is a natural choice for high-fidelity coherent links.
Our proof-of-principle demonstrates shuttling of a single electron by a propagating wave-potential in an electrostatically defined 420 nm long Si/SiGe quantum-channel.
arXiv Detail & Related papers (2021-08-02T13:26:46Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Programmable two-qubit gates in capacitively coupled flopping-mode spin
qubits [0.0]
We show a versatile set of quantum gates between adjacent spin qubits defined in semiconductor quantum dots.
We calculate the estimated infidelity of different two-qubit gates in the most immediate possible experimental realizations.
arXiv Detail & Related papers (2020-03-04T15:37:21Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.