Doubly Robust Conformalized Survival Analysis with Right-Censored Data
- URL: http://arxiv.org/abs/2412.09729v2
- Date: Fri, 23 May 2025 17:51:32 GMT
- Title: Doubly Robust Conformalized Survival Analysis with Right-Censored Data
- Authors: Matteo Sesia, Vladimir Svetnik,
- Abstract summary: We present a conformal inference method for constructing lower prediction bounds for survival times from right-censored data.<n>The proposed method imputes unobserved censoring times using a machine learning model, and then analyzes the imputed data via weighted conformal inference.
- Score: 7.865172920957456
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a conformal inference method for constructing lower prediction bounds for survival times from right-censored data, extending recent approaches designed for more restrictive type-I censoring scenarios. The proposed method imputes unobserved censoring times using a machine learning model, and then analyzes the imputed data using a survival model calibrated via weighted conformal inference. This approach is theoretically supported by an asymptotic double robustness property. Empirical studies on simulated and real data demonstrate that our method leads to relatively informative predictive inferences and is especially robust in challenging settings where the survival model may be inaccurate.
Related papers
- Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis [3.4137115855910762]
We introduce and evaluate two correction methods that substantially reduce prediction bias without relying on newly collected labeled data.<n>We demonstrate that the proposed methods meet or outperform existing approaches that either require (a) adjustments to training pipelines or (b) additional labeled data.
arXiv Detail & Related papers (2025-08-02T12:26:26Z) - TULiP: Test-time Uncertainty Estimation via Linearization and Weight Perturbation [11.334867025651233]
We propose TULiP, a theoretically-driven uncertainty estimator for OOD detection.<n>Our approach considers a hypothetical perturbation applied to the network before convergence.<n>Our method exhibits state-of-the-art performance, particularly for near-distribution samples.
arXiv Detail & Related papers (2025-05-22T17:16:41Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - ADDMU: Detection of Far-Boundary Adversarial Examples with Data and
Model Uncertainty Estimation [125.52743832477404]
Adversarial Examples Detection (AED) is a crucial defense technique against adversarial attacks.
We propose a new technique, textbfADDMU, which combines two types of uncertainty estimation for both regular and FB adversarial example detection.
Our new method outperforms previous methods by 3.6 and 6.0 emphAUC points under each scenario.
arXiv Detail & Related papers (2022-10-22T09:11:12Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Conditional Selective Inference for Robust Regression and Outlier
Detection using Piecewise-Linear Homotopy Continuation [16.443165965475096]
We consider statistical inference of model estimated after outliers are removed.
We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods.
arXiv Detail & Related papers (2021-04-22T03:01:18Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Conformalized Survival Analysis [6.92027612631023]
Existing survival analysis techniques heavily rely on strong modelling assumptions.
We develop an inferential method based on ideas from conformal prediction.
The validity and efficiency of our procedure are demonstrated on synthetic data and real COVID-19 data from the UK Biobank.
arXiv Detail & Related papers (2021-03-17T16:32:26Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.