A 3D lattice defect and efficient computations in topological MBQC
- URL: http://arxiv.org/abs/2412.09781v1
- Date: Fri, 13 Dec 2024 01:26:14 GMT
- Title: A 3D lattice defect and efficient computations in topological MBQC
- Authors: Gabrielle Tournaire, Marvin Schwiering, Robert Raussendorf, Sven Bachmann,
- Abstract summary: We describe an efficient, fully fault-tolerant implementation of Measurement-Based Quantum Computation (MBQC) in the 3D cluster state.
The two key novelties are (i) the introduction of a lattice defect in the underlying cluster state and (ii) the use of the Rudolph-Grover rebit encoding.
- Score: 0.0
- License:
- Abstract: We describe an efficient, fully fault-tolerant implementation of Measurement-Based Quantum Computation (MBQC) in the 3D cluster state. The two key novelties are (i) the introduction of a lattice defect in the underlying cluster state and (ii) the use of the Rudolph-Grover rebit encoding. Concretely, (i) allows for a topological implementation of the Hadamard gate, while (ii) does the same for the phase gate. Furthermore, we develop general ideas towards circuit compaction and algorithmic circuit verification, which we implement for the Reed-Muller code used for magic state distillation. Our performance analysis highlights the overall improvements provided by the new methods.
Related papers
- Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits [31.25958618453706]
We demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit.
We achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit.
arXiv Detail & Related papers (2025-01-08T16:49:27Z) - Universal quantum computation via scalable measurement-free error correction [45.29832252085144]
We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements.
We introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $mathitCCZ$ gate.
In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10-3$.
arXiv Detail & Related papers (2024-12-19T18:55:44Z) - Demonstrating dynamic surface codes [138.1740645504286]
We experimentally demonstrate three time-dynamic implementations of the surface code.
First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three.
Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors.
Third, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead.
arXiv Detail & Related papers (2024-12-18T21:56:50Z) - Error correction of transversal CNOT gates for scalable surface code computation [0.37282630026096597]
A controlled-NOT (tCNOT) gate introduces correlated errors across the code blocks.
We examine and benchmark the performance of three different decoding strategies for the tC for scalable, fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-08-02T17:09:08Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - A Novel Implementation Methodology for Error Correction Codes on a
Neuromorphic Architecture [0.8021197489470758]
We propose a methodology to map the hard-decision class of decoder algorithms on a neuromorphic architecture.
We present the implementation of the Gallager B decoding algorithm on a TrueNorth-inspired architecture that is emulated on the Xilinx Zynq ZCU102 MPSoC.
arXiv Detail & Related papers (2023-06-06T20:49:10Z) - Constant Depth Code Deformations in the Parity Architecture [0.0]
We present a protocol to encode and decode arbitrary quantum states in the parity architecture with constant circuit depth.
We show that our method can reduce the depth of implementing the quantum Fourier transform by a factor of two when allowing measurements.
arXiv Detail & Related papers (2023-03-15T13:15:26Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.