論文の概要: Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective
- arxiv url: http://arxiv.org/abs/2412.09805v2
- Date: Thu, 23 Oct 2025 15:26:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:02.924902
- Title: Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective
- Title(参考訳): Smoothness-Generalizationの視点
- Authors: Ming Gu, Zhuonan Zheng, Sheng Zhou, Meihan Liu, Jiawei Chen, Tanyu Qiao, Liangcheng Li, Jiajun Bu,
- Abstract要約: グラフニューラルネットワーク(GNN)は大きな成功を収めてきたが、グラフ内の様々なレベルのホモフィリにより、しばしば挑戦される。
近年の実証研究により、ホモフィリックGNNは異なるホモフィリレベルのデータセット間でよく機能することが示された。
Inceptive Graph Neural Network (IGNN) は3つのシンプルで効果的な設計原理に基づいて構築されている。
- 参考スコア(独自算出の注目度): 21.408092607722086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は大きな成功を収めてきたが、グラフ内の様々なレベルのホモフィリにより、しばしば挑戦される。
近年の実証研究により、ホモ親和性GNNは適切なハイパーパラメータチューニングを伴う異なるホモフィリーレベルのデータセットでうまく機能することが示されたが、基礎となる理論と効果的なアーキテクチャはいまだ不明である。
様々なホモフィリーにまたがってGNNの普遍性を推し進めるために、理論上GNNメッセージパッシングを再考し、新しいスムーズな一般化ジレンマを明らかにし、ホップの増加は一般化コストにおいて必然的にスムーズさを高める。
このジレンマは、高階のホモフレンドリーな地区と全てのヘテロフレンドリーな地区での学習を妨げる。
これを解決するために、インセプティブグラフニューラルネットワーク(IGNN)を3つの単純かつ効果的な設計原則に基づいて構築した。
30塩基に対するベンチマークはIGNNの優位性を示し、特定のホモ親和性GNN変種において顕著な普遍性を示す。
コードとデータセットはhttps://github.com/galogm/IGNN.comで公開されています。
関連論文リスト
- FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs [55.51300642911766]
Federated Graph Learning(FGL)は、クライアントがグラフニューラルネットワーク(GNN)を分散的にトレーニングすることを可能にする。
FGL法は通常、全てのクライアントが所有するグラフデータが、類似したノードの分布パターンを保証するためにホモフィリックであることが要求される。
異種グラフからの洞察を効果的に活用し、共有するために設計されたFGLフレームワークであるFedHEROを提案する。
論文 参考訳(メタデータ) (2025-04-29T22:23:35Z) - GRAIN: Multi-Granular and Implicit Information Aggregation Graph Neural Network for Heterophilous Graphs [11.458759345322832]
Granular and Implicit Graph Network (GRAIN) は異種グラフに特化して設計された新しいGNNモデルである。
GRAINは、さまざまなレベルでマルチビュー情報を集約し、非隣接ノードからの暗黙のデータを組み込むことで、ノードの埋め込みを強化する。
また,多粒度と暗黙的データを効率よく組み合わせ,ノード表現の質を大幅に向上させる適応グラフ情報集約器を導入する。
論文 参考訳(メタデータ) (2025-04-09T07:36:44Z) - Mixture of Decoupled Message Passing Experts with Entropy Constraint for General Node Classification [6.963363358936621]
本研究では,Mixture-of-Experts (MoE) 機構に基づくユニバーサルノード分類フレームワークを提案する。
GNNMoEは、ノード分類性能と多様なグラフデータセットの普遍性の両方において、メインストリームのGNN、異種GNN、グラフトランスフォーマーを著しく上回っている。
論文 参考訳(メタデータ) (2025-02-12T03:10:26Z) - Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification [4.129489934631072]
グラフニューラルネットワークはグラフ表現学習において優れているが、異種データと長距離依存に苦慮している。
ノード分類のための汎用モデルアーキテクチャであるGNNMoEを提案する。
GNNMoEは様々なグラフデータに対して優れた性能を示し、過度にスムースな問題や大域的なノイズを効果的に軽減している。
論文 参考訳(メタデータ) (2024-12-11T08:35:13Z) - One Model for One Graph: A New Perspective for Pretraining with Cross-domain Graphs [61.9759512646523]
複雑なネットワークパターンをキャプチャする強力なツールとして、グラフニューラルネットワーク(GNN)が登場した。
既存のGNNには、慎重にドメイン固有のアーキテクチャ設計と、データセットのスクラッチからのトレーニングが必要です。
我々は、新しいクロスドメイン事前学習フレームワーク「1つのグラフのための1つのモデル」を提案する。
論文 参考訳(メタデータ) (2024-11-30T01:49:45Z) - Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
論理的に異なるラベルを持つノードは意味論的意味に基づいて接続される傾向があるが、グラフニューラルネットワーク(GNN)は、しばしば最適以下の性能を示す。
ヘテロフィリーに固有の意味情報をグラフ学習において効果的に活用できることを示す。
ノード分布を利用して異種情報を統合する新しいグラフ構造を構築する革新的な手法であるHiGNNを提案する。
論文 参考訳(メタデータ) (2024-03-26T03:29:42Z) - Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural
Network [59.860534520941485]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、異種情報ネットワーク(HIN)を扱う能力に優れていた。
近年,自己指導型学習は最もエキサイティングな学習パラダイムの1つとなり,ラベルがない場合に大きな可能性を示す。
本稿では,自己教師型HGNNの問題点を考察し,HGNNのための新しいコントラスト学習機構であるHeCoを提案する。
論文 参考訳(メタデータ) (2023-04-24T16:17:21Z) - Heterophily-Aware Graph Attention Network [42.640057865981156]
グラフニューラルネットワーク(GNN)はグラフ表現学習において顕著な成功を収めている。
既存のヘテロフィル性GNNは、各エッジのヘテロフィリのモデリングを無視する傾向にあり、これはヘテロフィリ問題に取り組む上でも不可欠である。
本稿では,局所分布を基礎となるヘテロフィリーとして完全に探索し,活用することで,新たなヘテロフィア対応グラフ注意ネットワーク(HA-GAT)を提案する。
論文 参考訳(メタデータ) (2023-02-07T03:21:55Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Graph Neural Networks with Heterophily [40.23690407583509]
我々は、ホモフィリーなグラフとヘテロフィリーなグラフのGNNを一般化するCPGNNと呼ばれる新しいフレームワークを提案する。
フレームワークの互換性行列を(純粋なホモフィリーを表す)同一性に置き換えると、GCNに還元されることを示す。
論文 参考訳(メタデータ) (2020-09-28T18:29:36Z) - Beyond Homophily in Graph Neural Networks: Current Limitations and
Effective Designs [28.77753005139331]
半教師付きノード分類タスクにおけるグラフニューラルネットワークのヘテロフィリーまたは低ホモフィリー下での表現力について検討する。
多くの人気のあるGNNは、この設定を一般化することができず、グラフ構造を無視したモデルよりも優れています。
ヘテロフィリーの下でのグラフ構造からの学習を促進する重要な設計の集合を同定する。
論文 参考訳(メタデータ) (2020-06-20T02:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。