論文の概要: Temporal Causal Discovery in Dynamic Bayesian Networks Using Federated Learning
- arxiv url: http://arxiv.org/abs/2412.09814v1
- Date: Fri, 13 Dec 2024 03:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:33.957067
- Title: Temporal Causal Discovery in Dynamic Bayesian Networks Using Federated Learning
- Title(参考訳): フェデレートラーニングを用いた動的ベイズネットワークにおける時間因果発見
- Authors: Jianhong Chen, Ying Ma, Xubo Yue,
- Abstract要約: 本研究では,動的ベイズネットワークの構造を,各パーティに水平に分散したデータから推定するフェデレート学習手法を提案する。
合成および実データを用いた実験結果から,本手法が他の最先端技術より優れていることが明らかとなった。
- 参考スコア(独自算出の注目度): 2.4305626489408465
- License:
- Abstract: Traditionally, learning the structure of a Dynamic Bayesian Network has been centralized, with all data pooled in one location. However, in real-world scenarios, data are often dispersed among multiple parties (e.g., companies, devices) that aim to collaboratively learn a Dynamic Bayesian Network while preserving their data privacy and security. In this study, we introduce a federated learning approach for estimating the structure of a Dynamic Bayesian Network from data distributed horizontally across different parties. We propose a distributed structure learning method that leverages continuous optimization so that only model parameters are exchanged during optimization. Experimental results on synthetic and real datasets reveal that our method outperforms other state-of-the-art techniques, particularly when there are many clients with limited individual sample sizes.
- Abstract(参考訳): 伝統的に、ダイナミックベイズネットワークの構造を学ぶことは集中しており、すべてのデータがひとつの場所にプールされている。
しかし、現実のシナリオでは、データはデータプライバシとセキュリティを保ちながらダイナミックベイズネットワークを協調的に学習することを目的とした複数のパーティ(企業、デバイスなど)に分散することが多い。
本研究では,動的ベイズネットワークの構造を,異なるパーティ間で水平に分散したデータから推定するフェデレート学習手法を提案する。
本稿では,モデルパラメータのみを最適化中に交換する分散構造学習手法を提案する。
合成および実データを用いた実験結果から,本手法は他の最先端技術,特に個々のサンプルサイズに制限のあるクライアントが多数存在する場合よりも優れていることがわかった。
関連論文リスト
- Federated Foundation Models on Heterogeneous Time Series [36.229082478423585]
主な目的は、Transformerアーキテクチャ上でモデルをトレーニングするためのトークンとして共有サブシーケンスを抽出するために、ドメイン間の時系列データセットを融合することである。
本稿では,時系列基礎モデルトレーニング(FFTS)における不均一性に対処する新しいフェデレーション学習手法を提案する。
新たに学習された時系列基礎モデルは、予測、計算、異常検出を含むクロスドメイン時系列解析タスクにおいて優れた一般化能力を達成する。
論文 参考訳(メタデータ) (2024-12-12T03:38:01Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Towards Federated Bayesian Network Structure Learning with Continuous
Optimization [14.779035801521717]
本稿では,ベイズネットワークの構造を推定するクロスサイロ・フェデレーション学習手法を提案する。
本研究では,連続最適化に基づく分散構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-18T14:36:05Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。