論文の概要: Human-Like Embodied AI Interviewer: Employing Android ERICA in Real International Conference
- arxiv url: http://arxiv.org/abs/2412.09867v1
- Date: Fri, 13 Dec 2024 05:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:16.611834
- Title: Human-Like Embodied AI Interviewer: Employing Android ERICA in Real International Conference
- Title(参考訳): AIインタビュアー:Android ERICAを実際の国際会議で採用
- Authors: Zi Haur Pang, Yahui Fu, Divesh Lala, Mikey Elmers, Koji Inoue, Tatsuya Kawahara,
- Abstract要約: 本稿では,高度な対話機能を備えたアンドロイドロボットを統合した人間型AIインタビュアーを提案する。
SIGDIAL 2024では42名を対象に実例調査を行い,69%が陽性であった。
- 参考スコア(独自算出の注目度): 19.873188667424024
- License:
- Abstract: This paper introduces the human-like embodied AI interviewer which integrates android robots equipped with advanced conversational capabilities, including attentive listening, conversational repairs, and user fluency adaptation. Moreover, it can analyze and present results post-interview. We conducted a real-world case study at SIGDIAL 2024 with 42 participants, of whom 69% reported positive experiences. This study demonstrated the system's effectiveness in conducting interviews just like a human and marked the first employment of such a system at an international conference. The demonstration video is available at https://youtu.be/jCuw9g99KuE.
- Abstract(参考訳): 本稿では,高度な会話機能を備えたアンドロイドロボットを組み込んだ人間型AIインタビュアーを提案する。
さらに、インタビュー後の結果を分析および提示することができる。
SIGDIAL 2024では42名を対象に実例調査を行い,69%が陽性であった。
本研究は,人間と同じように面接を行う上でのシステムの有効性を実証し,国際会議において,このようなシステムを初めて採用することを示す。
デモビデオはhttps://youtu.be/jCuw9g99KuE.comで公開されている。
関連論文リスト
- Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre [48.19823828240628]
本研究では,Edinburgh Festival Fringeで1ヶ月のライブショーで展開されたLarge Language Models(LLMs)について紹介する。
オンザスポット多人数対話の技術的能力と制約について検討する。
我々のHuman-in-the-loop法は、文脈関連応答を生成する上で、これらのLCMの課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-05-11T23:19:42Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
本論文は,パリの保育所における患者と同伴者による2つの実験を通じて,社会的・対話的相互作用能力を備えたフルサイズのヒューマノイドロボットを用いて,この疑問に部分的に答えようとする試みである。
特に、ロボットの知覚とアクションスキルが環境の雑多さに対して堅牢であり、さまざまなインタラクションを扱うために柔軟である場合、ユーザーはこの技術を受け入れる。
論文 参考訳(メタデータ) (2024-04-11T08:43:37Z) - Dobby: A Conversational Service Robot Driven by GPT-4 [22.701223191699412]
この研究は、対話型AIエージェントをサービスタスクの具体化システムに組み込むロボティクスプラットフォームを導入する。
このエージェントは、膨大な一般知識のコーパスから学んだ、大きな言語モデルに由来する。
本発明のエージェントは対話生成に加えて、ロボットのコマンドを呼び出し、物理世界と対話することができる。
論文 参考訳(メタデータ) (2023-10-10T04:34:00Z) - HoloAssist: an Egocentric Human Interaction Dataset for Interactive AI
Assistants in the Real World [48.90399899928823]
この研究は、物理的な世界でのタスクを実行することで人間を対話的に導くインテリジェントエージェントを開発するための、より広範な研究努力の一環である。
大規模なエゴセントリックなヒューマンインタラクションデータセットであるHoloAssistを紹介する。
人間のアシスタントがミスを正し、タスク完了手順に介入し、環境に指示を下す方法について、重要な知見を提示する。
論文 参考訳(メタデータ) (2023-09-29T07:17:43Z) - InterviewBot: Real-Time End-to-End Dialogue System to Interview Students
for College Admission [18.630848902825406]
InterviewBotは会話履歴とカスタマイズされたトピックをコヒーレントな埋め込みスペースに統合する。
7,361件の人間対人間インタビューの音声録音を自動転写し、440件を手作業で微調整・評価する。
InterviewBotは、その回答をインタビューデータと比較することで統計的にテストし、プロのインタビュアーや様々な学生にリアルタイムで対話させることによって動的にテストする。
論文 参考訳(メタデータ) (2023-03-27T09:46:56Z) - BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [108.41464483878683]
本稿では,視覚に基づくロボット操作システムにおいて,新しいタスクを一般化することの課題について検討する。
実演と介入の両方から学ぶことができるインタラクティブで柔軟な模倣学習システムを開発した。
実際のロボットにおけるデータ収集を100以上のタスクにスケールすると、このシステムは平均的な成功率44%で24の目に見えない操作タスクを実行できる。
論文 参考訳(メタデータ) (2022-02-04T07:30:48Z) - ERICA: An Empathetic Android Companion for Covid-19 Quarantine [63.79997830430368]
我々は,自己隔離下での人々の隔離を容易にするために,エンド・ツー・エンドの対話システムを導入する。
ユーザインタフェース, Nora 対 Android ERICA という Web ベースの仮想エージェントの効果をビデオ通話で評価するための制御シミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-06-04T08:14:43Z) - Intelligent Conversational Android ERICA Applied to Attentive Listening
and Job Interview [41.789773897391605]
我々はインテリジェントな会話型android ericaを開発した。
ERICAには,注意深い聞き取り,就職面接,スピードデートなど,いくつかのソーシャルインタラクションタスクを設定した。
40人の高齢者が会話を分解することなく5~7分間の会話を行ったことが評価されている。
論文 参考訳(メタデータ) (2021-05-02T06:37:23Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。