Deterministic steady-state subradiance within a single-excitation basis
- URL: http://arxiv.org/abs/2412.09944v1
- Date: Fri, 13 Dec 2024 08:08:48 GMT
- Title: Deterministic steady-state subradiance within a single-excitation basis
- Authors: Meng-Jia Chu, Jun Ren, Z. D. Wang,
- Abstract summary: Subradiance shows promising applications in quantum information, yet its realization remains more challenging than superradiance.
This study introduces a state space within a single-excitation basis with perfect subradiance and genuine multipartite quantum entanglement resources.
- Score: 0.0
- License:
- Abstract: Subradiance shows promising applications in quantum information, yet its realization remains more challenging than superradiance due to the need to suppress various decay channels. This study introduces a state space within a single-excitation basis with perfect subradiance and genuine multipartite quantum entanglement resources for the all-to-all case. Utilizing the quantum jump operator method, we also provide an analytical derivation of the system's steady final state for any single-excitation initial state. Additionally, we determine the approximate final state in the quasi-all-to-all coupling scenario. As an illustrative example, we evaluate the coupling and dynamical properties of emitters in a photonic crystal slab possessing an ultra-high quality bound state in the continuum, thereby validating the efficacy of our theoretical approach. This theoretical framework facilitates the analytical prediction of dynamics for long-lived multipartite entanglement while elucidating a pathway toward realizing autonomous subradiance in atomic systems.
Related papers
- Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Dynamic population of multiexcitation subradiant states in incoherently
excited atomic arrays [0.0]
We show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
In particular, we show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
arXiv Detail & Related papers (2022-08-31T18:00:47Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Algebraic-Dynamical Theory for Quantum Many-body Hamiltonians: A
Formalized Approach To Strongly Interacting Systems [0.0]
Dynamical perturbation methods are the most widely used approaches for quantum many-body systems.
We formulate an algebraic-dynamical theory (ADT) by combining the power of quantum algebras and dynamical methods.
Applying ADT to many-body systems on lattices, we find that the quantum entanglement is represented by the cumulant structure of expectation values of the many-body COBS.
arXiv Detail & Related papers (2022-02-24T13:07:30Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Adiabatic Dynamics and Shortcuts to Adiabaticity: Fundamentals and
Applications [0.0]
This thesis is presented a set of results in adiabatic dynamics (closed and open system) and transitionless quantum driving.
A number of theoretical applications are studied, where some theoretical prediction presented in this thesis are experimentally verified.
arXiv Detail & Related papers (2021-07-25T13:16:17Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Efficient estimation of multipartite quantum coherence [3.948541278345575]
We propose a systematic theoretical approach to efficiently estimating lower and upper bounds of coherence in multipartite states.
Under the stabilizer formalism, the lower bound is determined by the spectrum estimation method with a small number of measurements.
We experimentally implement various multi-qubit entangled states, including the Greenberger-Horne-Zeilinger state, the cluster state, and the W state, and show how their coherence are efficiently inferred from measuring few observables.
arXiv Detail & Related papers (2020-10-06T10:45:43Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.