論文の概要: Assessing high-order effects in feature importance via predictability decomposition
- arxiv url: http://arxiv.org/abs/2412.09964v1
- Date: Fri, 13 Dec 2024 08:47:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:17.685840
- Title: Assessing high-order effects in feature importance via predictability decomposition
- Title(参考訳): 予測可能性分解による特徴量における高次効果の評価
- Authors: Marlis Ontivero-Ortega, Luca Faes, Jesus M Cortes, Daniele Marinazzo, Sebastiano Stramaglia,
- Abstract要約: 特徴量における協調効果の定量化のための新しい手法を提案する。
特に,特徴量尺度の適応バージョンを提案する。
GEANTによる模擬検出器の陽子/陽子判別への応用について報告する。
- 参考スコア(独自算出の注目度): 0.2097147938967934
- License:
- Abstract: Leveraging the large body of work devoted in recent years to describe redundancy and synergy in multivariate interactions among random variables, we propose a novel approach to quantify cooperative effects in feature importance, one of the most used techniques for explainable artificial intelligence. In particular, we propose an adaptive version of a well-known metric of feature importance, named Leave One Covariate Out (LOCO), to disentangle high-order effects involving a given input feature in regression problems. LOCO is the reduction of the prediction error when the feature under consideration is added to the set of all the features used for regression. Instead of calculating the LOCO using all the features at hand, as in its standard version, our method searches for the multiplet of features that maximize LOCO and for the one that minimize it. This provides a decomposition of the LOCO as the sum of a two-body component and higher-order components (redundant and synergistic), also highlighting the features that contribute to building these high-order effects alongside the driving feature. We report the application to proton/pion discrimination from simulated detector measures by GEANT.
- Abstract(参考訳): 近年の多変量間相互作用における冗長性と相乗効果を記述するために,本研究は,多変量間相互作用に係わる多変量間相互作用を多変量的に記述する手法として,機能的重要度における協調効果を定量化する手法を提案する。
特に,特定の入力特徴を回帰問題に含める高次効果を解消するために,LOCO(Leave One Covariate Out)と呼ばれる特徴重要度尺度の適応版を提案する。
LOCOは、検討中の機能が回帰に使用されるすべての機能のセットに追加されるときの予測誤差の低減である。
本手法では,すべての機能を使ってLOCOを計算するのではなく,LOCOを最大化する機能と,それを最小化する機能とを探索する。
これはLOCOを2体コンポーネントと高次コンポーネント(冗長性とシナジスティック)の和として分解し、駆動機能とともにこれらの高次効果を構築するのに寄与する特徴を強調します。
GEANTによる模擬検出器の陽子/陽子判別への応用について報告する。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - A Random Matrix Theory Perspective on the Spectrum of Learned Features and Asymptotic Generalization Capabilities [30.737171081270322]
完全に接続された2層ニューラルネットワークは、単一だが攻撃的な勾配降下ステップの後、ターゲット関数にどのように適応するかを検討する。
これは、2層ニューラルネットワークの一般化における特徴学習の影響を、ランダムな特徴や遅延トレーニング体制を超えて、はっきりと説明してくれる。
論文 参考訳(メタデータ) (2024-10-24T17:24:34Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Understanding Interlocking Dynamics of Cooperative Rationalization [90.6863969334526]
選択的合理化(Selective rationalization)は、ニューラルネットワークの出力を予測するのに十分な入力の小さなサブセットを見つけることによって、複雑なニューラルネットワークの予測を説明する。
このような合理化パラダイムでは,モデルインターロックという大きな問題が浮かび上がっている。
A2Rと呼ばれる新しい合理化フレームワークを提案し、アーキテクチャに第3のコンポーネントを導入し、選択とは対照的にソフトアテンションによって駆動される予測器を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:39:18Z) - DexDeepFM: Ensemble Diversity Enhanced Extreme Deep Factorization
Machine Model [8.73107818888638]
アンサンブルの多様性を高めた極深部分解機モデル(DexDeepFM)を提案する。
2つの公開現実世界のデータセットに関する実験は、提案されたモデルの優位性を示している。
論文 参考訳(メタデータ) (2021-04-05T14:06:32Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Multivariate Functional Regression via Nested Reduced-Rank
Regularization [2.730097437607271]
多変量関数応答と予測器を備えた回帰モデルに適用するネスト型低ランク回帰(NRRR)手法を提案する。
非漸近解析により、NRRRは少なくとも低ランク回帰と同等の誤差率を達成できることを示す。
NRRRを電力需要問題に適用し、日中電力消費の軌跡と日中電力消費の軌跡を関連づける。
論文 参考訳(メタデータ) (2020-03-10T14:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。