Electron matter waves with internal torque
- URL: http://arxiv.org/abs/2412.10076v1
- Date: Fri, 13 Dec 2024 12:06:59 GMT
- Title: Electron matter waves with internal torque
- Authors: Y. Fang, J. Kuttruff, P. Baum,
- Abstract summary: Angular momentum and torque are important principles for basic and applied physics on any spatial scales.<n>Investigating or controlling angular momentum in atoms or sub-atomic structures requires torque on femtosecond and picometer scales.<n>Here we shape electrons in an electron microscope into wave packets with a time-dependent chirality and internal torque.
- Score: 0.21847754147782888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Angular momentum and torque are important principles for basic and applied physics on any spatial scales, for example, in elementary particles, cold gases, optical tweezers, quantum information technology, metamaterials, gyroscopes or astrophysical entities. Investigating or controlling angular momentum in atoms or sub-atomic structures requires torque on femtosecond and picometer scales, far below the capabilities of laser light. Here we shape the electrons in an electron microscope into wave packets with a time-dependent chirality and internal torque. We intersect the electron beam with chiral laser light to create discrete energy sidebands by multiple helical photon absorptions that create a correlation between orbital angular momentum and kinetic energy. Dispersion of these partial waves due to the electron rest mass then converts each single electron into a wave function with internal torque. Under our control, a left-handed matter wave becomes right-handed in femtosecond times. Such quantum objects will facilitate research on angular momentum and chirality on atomic and sub-atomic scales.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Waveguides in a quantum perspective [49.1574468325115]
Solid state quantum devices, operated at dilution cryostat temperatures, are relying on microwave signals to drive and read-out their quantum states.<n>Here we report on the quantum theory that describes the simplest Cartesian-type geometries: parallel plates, and rectangular tubes.
arXiv Detail & Related papers (2025-05-20T12:42:07Z) - Two-electron quantum walks can probe entanglement and decoherence in an electron microscope [0.0]
We introduce a two-electron quantum walk that transforms the quantum state into different bases for quantum state tomography of entangled or partially entangled electron-electron pairs.<n>We observe a high contrast interference in the electron-electron correlations but no significant signs of electron-electron entanglement.<n>The ability to characterize quantum states of multiple free electrons may allow verification of electron-electron entanglement for use in fundamental studies and quantum electron microscopy.
arXiv Detail & Related papers (2025-05-06T17:27:36Z) - Observation of quantum entanglement between free electrons and photons [0.0]
We demonstrate quantum entanglement between free electrons and photons.
We show that entanglement is produced when an electron, prepared in a superposition of two beams, passes a nanostructure.
We anticipate developments in enhanced electron imaging and spectroscopy beyond the standard quantum limit.
arXiv Detail & Related papers (2025-04-17T16:03:05Z) - Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum [40.27879500842531]
Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring quantum mechanics.
We fabricate an integrated surface ion trap with multiple stabilization electrodes.
This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum.
arXiv Detail & Related papers (2023-09-11T20:56:09Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Self-trapping of slow electrons in the energy domain [0.0]
We show that slow electrons are subject to strong confinement in the energy domain due to the non-vanishing curvature of the electron dispersion.
The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states.
arXiv Detail & Related papers (2022-09-29T15:07:11Z) - Electron Wave Spin in a Quantum Well [0.0]
We show that a stable circulating total current density exists inside the well with a donut shaped topography.
A spin value is modified by the confining geometry of the well.
A free electron Gaussian wavepacket is unstable and experiences quick decoherence.
arXiv Detail & Related papers (2022-03-17T16:50:36Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Imprinting the quantum statistics of photons on free electrons [0.15274583259797847]
We observe quantum statistics effects of photons on free-electron-light interactions.
We demonstrate interactions passing continuously from Poissonian to super-Poissonian and up to thermal statistics.
Our findings suggest free-electron-based non-destructive quantum tomography of light, and constitute an important step towards combined atto-second and sub-A-spatial resolution microscopy.
arXiv Detail & Related papers (2021-05-07T08:16:21Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.