論文の概要: ProbeSDF: Light Field Probes for Neural Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2412.10084v1
- Date: Fri, 13 Dec 2024 12:18:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:41.243179
- Title: ProbeSDF: Light Field Probes for Neural Surface Reconstruction
- Title(参考訳): ProbeSDF: 神経表面再構成のための光電場プローブ
- Authors: Briac Toussaint, Diego Thomas, Jean-Sébastien Franco,
- Abstract要約: SDFベースのディファレンシャルレンダリングフレームワークは、最先端のマルチビュー3次元形状再構成を実現している。
我々は、その中核的な外観モデルを最小限に修正することで、このアプローチの族を再検討する。
この性能は、広く異なる2つの一般的なアプリケーションフィールド上の実データ上で一貫して達成されることを示す。
- 参考スコア(独自算出の注目度): 4.0130618054041385
- License:
- Abstract: SDF-based differential rendering frameworks have achieved state-of-the-art multiview 3D shape reconstruction. In this work, we re-examine this family of approaches by minimally reformulating its core appearance model in a way that simultaneously yields faster computation and increased performance. To this goal, we exhibit a physically-inspired minimal radiance parametrization decoupling angular and spatial contributions, by encoding them with a small number of features stored in two respective volumetric grids of different resolutions. Requiring as little as four parameters per voxel, and a tiny MLP call inside a single fully fused kernel, our approach allows to enhance performance with both surface and image (PSNR) metrics, while providing a significant training speedup and real-time rendering. We show this performance to be consistently achieved on real data over two widely different and popular application fields, generic object and human subject shape reconstruction, using four representative and challenging datasets.
- Abstract(参考訳): SDFベースのディファレンシャルレンダリングフレームワークは、最先端のマルチビュー3次元形状再構成を実現している。
そこで本研究では,コアの外観モデルを,高速な計算と性能向上を同時に実現する方法で最小限に再構成することで,このアプローチの系統を再検討する。
この目的のために, 異なる解像度の2つの体積格子に格納された少数の特徴を符号化することにより, 角と空間の寄与を分離する最小放射光パラメトリゼーションを物理的にインスピレーションした。
1ボクセルあたりのパラメータが4つも必要で、1つの完全に融合したカーネル内でのMLPコールが小さいため、当社のアプローチでは、トレーニングの高速化とリアルタイムレンダリングを両面および画像(PSNR)メトリクスで向上することが可能です。
この性能は、4つの代表的および挑戦的なデータセットを用いて、2つの広く異なる一般的なアプリケーションフィールド、ジェネリックオブジェクトと人体形状再構成の実際のデータ上で一貫して達成されることを示す。
関連論文リスト
- RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering [26.988572852463815]
本稿では,新しいエンド・ツー・エンド・エンド・リライトブル・ニューラル・リバース・レンダリングシステムを提案する。
本アルゴリズムは,逆レンダリングとリライトにおける最先端性能を実現する。
実験により, 逆レンダリングおよびリライティングにおける最先端性能が得られた。
論文 参考訳(メタデータ) (2024-09-30T09:42:10Z) - VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
四面体グリッド上での3次元形状特性を推定するために,明示的なSDFフィールドと浅いカラーネットワークを組み合わせた体積最適化フレームワークを提案する。
Chamfer統計による実験結果は、オブジェクト、オープンシーン、人間などの様々なシナリオにおいて、前例のない復元品質でこのアプローチを検証する。
論文 参考訳(メタデータ) (2024-07-29T09:46:39Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
テクスチャレス領域の3次元再構成における課題を解決するために,多視点ステレオ (SD-MVS) を導入する。
私たちは、シーン内のセグメンテーションインスタンスを区別するためにSAM(Segment Anything Model)を採用した最初の人です。
球面座標と正規点の勾配勾配と深度の画素方向探索間隔を組み合わせた独自の精細化戦略を提案する。
論文 参考訳(メタデータ) (2024-01-12T05:25:57Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
ニューラル放射場は、最先端のビュー合成品質を提供するが、レンダリングが遅くなる傾向がある。
本稿では,ほとんどの物体を表面としてレンダリングすることで,両表現の強みを生かしたHybridNeRFを提案する。
仮想現実分解能(2Kx2K)のリアルタイムフレームレート(少なくとも36FPS)を達成しながら、エラー率を15~30%改善する。
論文 参考訳(メタデータ) (2023-12-05T22:04:49Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis [73.50359502037232]
VoxNeRFは、ニューラル室内再構成と新しいビュー合成の質と効率を高めるための新しいアプローチである。
本稿では,最も関連性の高い領域に計算資源を割り当てる効率的なボクセル誘導サンプリング手法を提案する。
私たちのアプローチは、ScanNetとScanNet++に関する広範な実験で検証されています。
論文 参考訳(メタデータ) (2023-11-09T11:32:49Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
本稿では,高頻度幾何細部リカバリとアンチエイリアス化された新しいビューレンダリングのための効率的なニューラル表現であるLoD-NeuSを提案する。
我々の表現は、光線に沿った円錐状のフラストラム内の多面体化から空間特徴を集約する。
論文 参考訳(メタデータ) (2023-09-19T05:44:00Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
論文 参考訳(メタデータ) (2023-06-13T09:02:57Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
本稿では,スパルス・ボクセル・ブロック・グリッドにおける署名付き距離関数(SDF)を直接使用して,距離のない高速かつ正確なシーン再構成を実現することを提案する。
我々の世界規模で疎密で局所的なデータ構造は、表面の空間的空間性を利用して、キャッシュフレンドリーなクエリを可能にし、マルチモーダルデータへの直接拡張を可能にします。
実験により、我々のアプローチはトレーニングでは10倍、レンダリングでは100倍高速であり、最先端のニューラル暗黙法に匹敵する精度を実現していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T16:50:19Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z) - Monocular Real-Time Volumetric Performance Capture [28.481131687883256]
本稿では,モノクロ映像から実時間速度でボリューム・パフォーマンス・キャプチャとノベル・ビュー・レンダリングを行うための最初のアプローチを提案する。
このシステムは,Pixel-Aligned Implicit Function (PIFu)を活用して,各フレームから完全にテクスチャ化された3次元人体を再構成する。
また,オンラインハード・サンプル・マイニング(OHEM)技術を導入し,難題の稀な発生により,障害モードを効果的に抑制する手法を提案する。
論文 参考訳(メタデータ) (2020-07-28T04:45:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。