論文の概要: From ChatGPT to DeepSeek AI: A Comprehensive Analysis of Evolution, Deviation, and Future Implications in AI-Language Models
- arxiv url: http://arxiv.org/abs/2504.03219v1
- Date: Fri, 04 Apr 2025 07:08:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:14.836028
- Title: From ChatGPT to DeepSeek AI: A Comprehensive Analysis of Evolution, Deviation, and Future Implications in AI-Language Models
- Title(参考訳): ChatGPTからDeepSeek AI:AI言語モデルにおける進化、逸脱、そして将来の意味の包括的分析
- Authors: Simrandeep Singh, Shreya Bansal, Abdulmotaleb El Saddik, Mukesh Saini,
- Abstract要約: 人工知能(AI)の急速な進歩は、OpenAI ChatGPTやDeepSeek AIといったモデルとともに、自然言語処理(NLP)の分野を変えました。
本稿では,ChatGPTからDeepSeek AIへの進化を詳細に分析し,その技術的違い,実践的応用,AI開発への広範な影響を明らかにする。
- 参考スコア(独自算出の注目度): 8.03446809073899
- License:
- Abstract: The rapid advancement of artificial intelligence (AI) has reshaped the field of natural language processing (NLP), with models like OpenAI ChatGPT and DeepSeek AI. Although ChatGPT established a strong foundation for conversational AI, DeepSeek AI introduces significant improvements in architecture, performance, and ethical considerations. This paper presents a detailed analysis of the evolution from ChatGPT to DeepSeek AI, highlighting their technical differences, practical applications, and broader implications for AI development. To assess their capabilities, we conducted a case study using a predefined set of multiple choice questions in various domains, evaluating the strengths and limitations of each model. By examining these aspects, we provide valuable insight into the future trajectory of AI, its potential to transform industries, and key research directions for improving AI-driven language models.
- Abstract(参考訳): 人工知能(AI)の急速な進歩は、OpenAI ChatGPTやDeepSeek AIといったモデルとともに、自然言語処理(NLP)の分野を変えました。
ChatGPTは会話型AIの強力な基盤を確立しているが、DeepSeek AIはアーキテクチャ、パフォーマンス、倫理的考慮において大幅に改善されている。
本稿では,ChatGPTからDeepSeek AIへの進化を詳細に分析し,その技術的違い,実践的応用,AI開発への広範な影響を明らかにする。
その能力を評価するために,各領域における複数の選択質問の事前定義された集合を用いてケーススタディを行い,各モデルの強みと限界を評価した。
これらの側面を調べることで、AIの将来的な軌道、産業を変革する可能性、そしてAI駆動型言語モデルを改善するための重要な研究方向について、貴重な洞察を提供する。
関連論文リスト
- AI in the Cosmos [0.0]
情報源分類、スペクトルエネルギー分布モデリングなど、天体物理学におけるAI応用例を強調し、生成AIによる達成可能な進歩について議論する。
AIの使用は、バイアスやエラー、AIモデルの“ブラックボックス”といった課題を導入している。
これらの問題は、人間の専門知識とドメイン固有の知識をAIアプリケーションに統合するHG-AI(Human-Guided AI)の概念を通じて解決することができる。
論文 参考訳(メタデータ) (2024-12-13T12:30:11Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
本稿では、ジェネレーティブAIにおける最近の進歩と技術に関する体系的なレビューと分析について述べる。
生成AIがこれまで行った大きな影響は、大きな言語モデルの開発による言語生成である。
論文は、責任あるAIの原則と、これらの生成モデルの持続可能性と成長に必要な倫理的考察から締めくくられる。
論文 参考訳(メタデータ) (2024-05-17T18:03:59Z) - Cognition is All You Need -- The Next Layer of AI Above Large Language
Models [0.0]
我々は,大規模言語モデル以外のニューロシンボリック認知のためのフレームワークであるCognitive AIを紹介する。
我々は、認知AIがAGIのようなAI形態の進化に必須の先駆者であり、AGIは独自の確率論的アプローチでは達成できないと主張する。
我々は、大規模言語モデル、AIの採用サイクル、および商用の認知AI開発に関する議論で締めくくります。
論文 参考訳(メタデータ) (2024-03-04T16:11:57Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。