Monkeypox disease recognition model based on improved SE-InceptionV3
- URL: http://arxiv.org/abs/2403.10087v2
- Date: Tue, 7 May 2024 12:27:21 GMT
- Title: Monkeypox disease recognition model based on improved SE-InceptionV3
- Authors: Junzhuo Chen, Zonghan Lu, Shitong Kang,
- Abstract summary: This study introduces an improved SE-InceptionV3 model, embedding the SENet module and incorporating L2 regularization into the InceptionV3 framework to enhance monkeypox disease detection.
Our model demonstrates a noteworthy accuracy of 96.71% on the test set, outperforming conventional methods and deep learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the wake of the global spread of monkeypox, accurate disease recognition has become crucial. This study introduces an improved SE-InceptionV3 model, embedding the SENet module and incorporating L2 regularization into the InceptionV3 framework to enhance monkeypox disease detection. Utilizing the Kaggle monkeypox dataset, which includes images of monkeypox and similar skin conditions, our model demonstrates a noteworthy accuracy of 96.71% on the test set, outperforming conventional methods and deep learning models. The SENet modules channel attention mechanism significantly elevates feature representation, while L2 regularization ensures robust generalization. Extensive experiments validate the models superiority in precision, recall, and F1 score, highlighting its effectiveness in differentiating monkeypox lesions in diverse and complex cases. The study not only provides insights into the application of advanced CNN architectures in medical diagnostics but also opens avenues for further research in model optimization and hyperparameter tuning for enhanced disease recognition. https://github.com/jzc777/SE-inceptionV3-L2
Related papers
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
arXiv Detail & Related papers (2024-08-16T20:15:24Z) - Attention Based Feature Fusion Network for Monkeypox Skin Lesion Detection [0.09642500063568188]
Recent monkeypox outbreak has raised significant public health concerns.
Deep learning algorithms can be used to identify diseases, including COVID-19.
We introduce a lightweight model that merges two pre-trained architectures to classify human monkeypox disease.
arXiv Detail & Related papers (2024-08-13T05:21:03Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - Transfer learning and Local interpretable model agnostic based visual
approach in Monkeypox Disease Detection and Classification: A Deep Learning
insights [0.0]
The recent development of Monkeypox disease poses a global pandemic threat when the world is still fighting Coronavirus Disease 2019 (COVID-19).
We have conducted two studies where we modified and tested six distinct deep learning models-VGG16, InceptionResNetV2, ResNet50, ResNet101, MobileNetV2, and VGG19-using transfer learning approaches.
Our preliminary computational results show that the proposed modified InceptionResNetV2 and MobileNetV2 models perform best by achieving an accuracy ranging from 93% to 99%.
arXiv Detail & Related papers (2022-11-01T18:07:34Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - Monkeypox Skin Lesion Detection Using Deep Learning Models: A
Feasibility Study [1.9395755884693817]
Recent monkeypox outbreak has become a public health concern due to its rapid spread in more than 40 countries outside Africa.
Computer-assisted detection of monkeypox lesions could be beneficial for surveillance and rapid identification of suspected cases.
Deep learning methods have been found effective in the automated detection of skin lesions.
arXiv Detail & Related papers (2022-07-06T09:09:28Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.