論文の概要: ASLoRA: Adaptive Sharing Low-Rank Adaptation Across Layers
- arxiv url: http://arxiv.org/abs/2412.10135v1
- Date: Fri, 13 Dec 2024 13:32:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:13.408488
- Title: ASLoRA: Adaptive Sharing Low-Rank Adaptation Across Layers
- Title(参考訳): ASLoRA: 層横断の低ランク適応を適応的に共有する
- Authors: Junyan Hu, Xue Xiao, Mengqi Zhang, Xiao Chen, Zhaochun Ren, Zhumin Chen, Pengjie Ren,
- Abstract要約: ASLoRAはグローバル共有と部分適応共有を組み合わせた多層パラメータ共有戦略である。
我々は様々なNLPタスクの実験を行い、パラメータの25%未満を使用しながら、ASLoRAがLoRAより優れていることを示した。
- 参考スコア(独自算出の注目度): 37.692825980277576
- License:
- Abstract: As large language models (LLMs) grow in size, traditional full fine-tuning becomes increasingly impractical due to its high computational and storage costs. Although popular parameter-efficient fine-tuning methods, such as LoRA, have significantly reduced the number of tunable parameters, there is still room for further optimization. In this work, we propose ASLoRA, a cross-layer parameter-sharing strategy combining global sharing with partial adaptive sharing. Specifically, we share the low-rank matrix A across all layers and adaptively merge matrix B during training. This sharing mechanism not only mitigates overfitting effectively but also captures inter-layer dependencies, significantly enhancing the model's representational capability. We conduct extensive experiments on various NLP tasks, showing that ASLoRA outperforms LoRA while using less than 25% of the parameters, highlighting its flexibility and superior parameter efficiency. Furthermore, in-depth analyses of the adaptive sharing strategy confirm its significant advantages in enhancing both model flexibility and task adaptability.
- Abstract(参考訳): 大規模言語モデル(LLM)のサイズが大きくなるにつれて、計算コストとストレージコストが高いため、従来の完全な微調整はますます実用的ではない。
LoRAのようなパラメータ効率の高い微調整法は、チューナブルパラメータの数を著しく削減しているが、さらなる最適化の余地は残っている。
本研究では,グローバル共有と部分適応共有を組み合わせた多層パラメータ共有戦略であるASLoRAを提案する。
具体的には、すべての層で低ランク行列Aを共有し、トレーニング中に行列Bを適応的にマージする。
この共有メカニズムは、オーバーフィッティングを効果的に軽減するだけでなく、層間依存関係をキャプチャし、モデルの表現能力を著しく向上させる。
我々は様々なNLPタスクに対して広範な実験を行い、ASLoRAは25%未満のパラメータを使用しながらLoRAよりも優れており、柔軟性と優れたパラメータ効率を誇示している。
さらに、適応的共有戦略の詳細な分析により、モデルの柔軟性とタスク適応性の両方を向上する上で、その大きな利点が確認できる。
関連論文リスト
- LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
ファンデーションモデル(FM)は、タスク固有の微調整によって、多様なタスクにまたがる強力なパフォーマンスを実現する。
低ランク適応 (LoRA) のようなローランク適応 (LoRA) 手法は、少ないパラメータをチューニングするための低ランク行列を導入することで、このコストを削減する。
LoRA-FAIRは計算と通信の効率を維持し、最先端の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2024-11-22T14:19:01Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards [35.163843138935455]
大規模言語モデルの迅速なスケーリングには、爆発的なGPUメモリオーバーヘッドを低減するために、より軽量な微調整方法が必要である。
本研究は、純粋な共有による有害な影響を逆転させる上で、差別化が不可欠であることを示す。
本研究では,層間共有と層間共有を併用し,ほぼ費用がかからない4つの差別戦略を統合することで,Shardsの混合(MoS)を提案する。
論文 参考訳(メタデータ) (2024-10-01T07:47:03Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation [4.07532985236519]
本研究では,共有低ランク適応(ShareLoRA)を実装することにより,事前学習言語モデル(PLM)に対するPEFT(Efficient Fine Tuning)の最適化手法を提案する。
異なるレイヤにShareLoRAを戦略的にデプロイし、それを自己アテンションレイヤのクエリ、キー、バリューコンポーネントに適用することにより、トレーニングパラメータの数とメモリ使用量を大幅に削減します。
この結果から、ShareLoRAはパラメータ効率を効果的に向上し、異なる言語モデルアーキテクチャにおけるスケーラブルで高品質な性能を確保します。
論文 参考訳(メタデータ) (2024-06-16T02:52:28Z) - LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models [7.926974917872204]
LoRA-SPはランダム化半選択パラメータ凍結を利用した新しい手法である。
LoRA-SPは、モデル性能を損なうことなく、計算とメモリの要求を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-28T06:50:10Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
部分回転型低ランク適応(PRoLoRA)は層内共有機構である。
PRoLoRAはその利点を保ち、ピアパラメータ共有手法の欠点を効果的に回避する。
実験によりPRoLoRAのパラメータ効率が著しく向上した。
論文 参考訳(メタデータ) (2024-02-24T13:39:05Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。