Anticoncentration and magic spreading under ergodic quantum dynamics
- URL: http://arxiv.org/abs/2412.10229v1
- Date: Fri, 13 Dec 2024 16:00:34 GMT
- Title: Anticoncentration and magic spreading under ergodic quantum dynamics
- Authors: Emanuele Tirrito, Xhek Turkeshi, Piotr Sierant,
- Abstract summary: Anticoncentration and equilibration of magic under dynamics of random quantum circuits occur at times scaling logarithmically with system size.<n>This work challenges this idea by examining the anticoncentration and magic spreading in one-dimensional ergodic Floquet models and Hamiltonian systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state complexity metrics, such as anticoncentration and magic, offer key insights into many-body physics, information scrambling, and quantum computing. Anticoncentration and equilibration of magic under dynamics of random quantum circuits occur at times scaling logarithmically with system size, a prediction that is believed to extend to more general ergodic dynamics. This work challenges this idea by examining the anticoncentration and magic spreading in one-dimensional ergodic Floquet models and Hamiltonian systems. Using participation and stabilizer entropies to probe these resources, we reveal significant differences between the two settings.Floquet systems align with random circuit predictions, exhibiting anticoncentration and saturation of magic at time scales that increase logarithmically with system size. In contrast, Hamiltonian dynamics deviate from the random circuit predictions and require times scaling approximately linearly with system size to achieve saturation of participation and stabilizer entropies, which remain smaller than that of the typical quantum states even in the long-time limit. Our findings establish the phenomenology of participation and entropy growth in ergodic many-body systems and emphasize the role of energy conservation in constraining anticoncentration and magic dynamics.
Related papers
- Multiple Quantum Many-Body Clustering Probed by Dynamical Decoupling [0.0]
manipulation of quantum information in large systems requires precise control of quantum systems that are out-of-equilibrium.
We demonstrate that the system response during a prethermal period, subject to Floquet control, can be utilized to probe the multiple quantum evolution of dense and highly connected spin systems.
arXiv Detail & Related papers (2025-04-21T15:46:05Z) - Magic dynamics in many-body localized systems [0.0]
Nonstabilizerness, also known as quantum magic, quantifies the deviation of quantum states from stabilizer states.<n>In this study, we investigate the dynamics of quantum magic in disordered many-body localized (MBL) systems using the stabilizer R'enyi entropy (SRE)<n>Our results offer critical insights into the interplay of disorder, interactions, and complexity in quantum many-body systems.
arXiv Detail & Related papers (2025-03-10T15:46:49Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Entanglement propagation and dynamics in non-additive quantum systems [0.0]
Long-range interacting quantum systems are promising candidates for quantum technological applications.
We describe the dynamics of the entanglement entropy in many diverging-body quantum systems.
Quantitative predictions on the shape and timescales of entanglement propagation are made.
arXiv Detail & Related papers (2021-12-21T19:07:17Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Analyzing non-equilibrium quantum states through snapshots with
artificial neural networks [0.0]
Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes.
Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system.
A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system.
arXiv Detail & Related papers (2020-12-21T18:59:21Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.