Conformal Prediction on Quantifying Uncertainty of Dynamic Systems
- URL: http://arxiv.org/abs/2412.10459v2
- Date: Tue, 17 Dec 2024 11:35:02 GMT
- Title: Conformal Prediction on Quantifying Uncertainty of Dynamic Systems
- Authors: Aoming Liang, Qi Liu, Lei Xu, Fahad Sohrab, Weicheng Cui, Changhui Song, Moncef Gabbouj,
- Abstract summary: We introduce conformal prediction into the uncertainty assessment of dynamical systems.
This paper uses the conformal prediction method to assess uncertainties with benchmark operator learning methods.
We have also compared the Monte Carlo Dropout and Ensemble methods in the partial differential equations dataset.
- Score: 15.922642503804092
- License:
- Abstract: Numerous studies have focused on learning and understanding the dynamics of physical systems from video data, such as spatial intelligence. Artificial intelligence requires quantitative assessments of the uncertainty of the model to ensure reliability. However, there is still a relative lack of systematic assessment of the uncertainties, particularly the uncertainties of the physical data. Our motivation is to introduce conformal prediction into the uncertainty assessment of dynamical systems, providing a method supported by theoretical guarantees. This paper uses the conformal prediction method to assess uncertainties with benchmark operator learning methods. We have also compared the Monte Carlo Dropout and Ensemble methods in the partial differential equations dataset, effectively evaluating uncertainty through straight roll-outs, making it ideal for time-series tasks.
Related papers
- Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
Evidential deep learning is a technique that extends parametric deep learning to higher-order distributions.
This study compares the uncertainty derived from evidential neural networks to those obtained from ensembles.
We show evidential deep learning models attaining predictive accuracy rivaling standard methods, while robustly quantifying both sources of uncertainty.
arXiv Detail & Related papers (2023-09-22T23:04:51Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Quantifying Deep Learning Model Uncertainty in Conformal Prediction [1.4685355149711297]
Conformal Prediction is a promising framework for representing the model uncertainty.
In this paper, we explore state-of-the-art CP methodologies and their theoretical foundations.
arXiv Detail & Related papers (2023-06-01T16:37:50Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Assessment of DeepONet for reliability analysis of stochastic nonlinear
dynamical systems [4.301367153728694]
We investigate the efficacy of recently proposed DeepONet in solving time dependent reliability analysis and uncertainty quantification of systems subjected to loading.
Unlike conventional machine learning and deep learning algorithms, DeepONet learns is a operator network and learns a function to function mapping.
arXiv Detail & Related papers (2022-01-31T11:41:08Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Uncertainty in Data-Driven Kalman Filtering for Partially Known
State-Space Models [84.18625250574853]
We investigate the ability of KalmanNet, a proposed hybrid model-based deep state tracking algorithm, to estimate an uncertainty measure.
We show that the error covariance matrix can be computed based on its internal features, as an uncertainty measure.
We demonstrate that when the system dynamics are known, KalmanNet-which learns its mapping from data without access to the statistics-provides uncertainty similar to that provided by the Kalman filter.
arXiv Detail & Related papers (2021-10-10T08:52:18Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
We propose an uncertainty learning mechanism to simultaneously estimate internal data quality and external uncertainty regarding various contextual interactions.
We show that our proposed model is superior in terms of both forecasting and uncertainty quantification.
arXiv Detail & Related papers (2021-02-09T01:43:27Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
We propose a novel method for detecting the absence of training data using deep learning.
We show its advantages over existing approaches on synthetic and real-world datasets.
We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter.
arXiv Detail & Related papers (2020-10-06T10:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.