Sparse Identification of Nonlinear Dynamics with Conformal Prediction
- URL: http://arxiv.org/abs/2507.11739v1
- Date: Tue, 15 Jul 2025 21:12:09 GMT
- Title: Sparse Identification of Nonlinear Dynamics with Conformal Prediction
- Authors: Urban Fasel,
- Abstract summary: We introduce three applications of conformal prediction with EnsembleSINDy (ESINDy)<n>We show that conformal prediction methods integrated with ESINDy can reliably achieve desired target coverage for time series forecasting.
- Score: 0.6993026261767287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Sparse Identification of Nonlinear Dynamics (SINDy) is a method for discovering nonlinear dynamical system models from data. Quantifying uncertainty in SINDy models is essential for assessing their reliability, particularly in safety-critical applications. While various uncertainty quantification methods exist for SINDy, including Bayesian and ensemble approaches, this work explores the integration of Conformal Prediction, a framework that can provide valid prediction intervals with coverage guarantees based on minimal assumptions like data exchangeability. We introduce three applications of conformal prediction with Ensemble-SINDy (E-SINDy): (1) quantifying uncertainty in time series prediction, (2) model selection based on library feature importance, and (3) quantifying the uncertainty of identified model coefficients using feature conformal prediction. We demonstrate the three applications on stochastic predator-prey dynamics and several chaotic dynamical systems. We show that conformal prediction methods integrated with E-SINDy can reliably achieve desired target coverage for time series forecasting, effectively quantify feature importance, and produce more robust uncertainty intervals for model coefficients, even under non-Gaussian noise, compared to standard E-SINDy coefficient estimates.
Related papers
- Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks [1.4671424999873808]
Uncertainty is critical in safety-sensitive applications but is often omitted from off-the-shelf neural networks due to adverse effects on predictive performance.<n>We propose a theoretically grounded framework for post-hoc uncertainty estimation in regression tasks by fitting an auxiliary model to both original inputs and frozen model outputs.
arXiv Detail & Related papers (2025-06-01T09:13:27Z) - SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
We propose a novel approach termed Selective Conformal Uncertainty (SConU)<n>We develop two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level.<n>Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions.
arXiv Detail & Related papers (2025-04-19T03:01:45Z) - Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We address the problem of uncertainty quantification in time series by exploiting correlated sequences.<n>We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.<n>Our approach provides accurate coverage and achieves state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - Conformal Prediction on Quantifying Uncertainty of Dynamic Systems [15.922642503804092]
We introduce conformal prediction into the uncertainty assessment of dynamical systems.<n>This paper uses the conformal prediction method to assess uncertainties with benchmark operator learning methods.<n>We have also compared the Monte Carlo Dropout and Ensemble methods in the partial differential equations dataset.
arXiv Detail & Related papers (2024-12-12T10:45:02Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - MAntRA: A framework for model agnostic reliability analysis [0.0]
We propose a novel model data-driven reliability analysis framework for time-dependent reliability analysis.
The proposed approach combines interpretable machine learning, Bayesian statistics, and identifying dynamic equation.
Results indicate the possible application of the proposed approach for reliability analysis of insitu and heritage structures from on-site measurements.
arXiv Detail & Related papers (2022-12-13T00:57:09Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.