論文の概要: Finite Sample Analysis of Tensor Decomposition for Learning Mixtures of Linear Systems
- arxiv url: http://arxiv.org/abs/2412.10615v1
- Date: Fri, 13 Dec 2024 23:41:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:38.407024
- Title: Finite Sample Analysis of Tensor Decomposition for Learning Mixtures of Linear Systems
- Title(参考訳): 線形システムの学習用テンソル分解の有限サンプル解析
- Authors: Maryann Rui, Munther Dahleh,
- Abstract要約: 入力出力データから線形力学系の混合を学習する問題について検討する。
本研究では, テンソル分解を用いて混合系の成分モデルのインパルス応答を推定するモーメントベース推定器を提案する。
- 参考スコア(独自算出の注目度): 0.6445605125467574
- License:
- Abstract: We study the problem of learning mixtures of linear dynamical systems (MLDS) from input-output data. This mixture setting allows us to leverage observations from related dynamical systems to improve the estimation of individual models. Building on spectral methods for mixtures of linear regressions, we propose a moment-based estimator that uses tensor decomposition to estimate the impulse response of component models of the mixture. The estimator improves upon existing tensor decomposition approaches for MLDS by utilizing the entire length of the observed trajectories. We provide sample complexity bounds for estimating MLDS in the presence of noise, in terms of both $N$ (number of trajectories) and $T$ (trajectory length), and demonstrate the performance of our estimator through simulations.
- Abstract(参考訳): 入力出力データから線形力学系(MLDS)の混合学習問題について検討する。
この混合設定により、関連する力学系からの観測を利用して個々のモデルの推定を改善することができる。
線形回帰の混合に対するスペクトル法に基づいて、テンソル分解を用いて混合成分モデルのインパルス応答を推定するモーメントベース推定器を提案する。
推定器は観測軌跡全体の長さを利用して既存のMLDSのテンソル分解手法を改善する。
本研究では,MLDSの雑音発生時における推定値として,N$(トラジェクトリ数)とT$(トラジェクトリ長)の両値を用いて,MLDSを推定し,シミュレーションにより推定器の性能を実証する。
関連論文リスト
- Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Response Theory via Generative Score Modeling [0.0]
スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせた外部摂動に対する動的システムの応答解析手法を提案する。
この手法は,非ガウス統計を含むシステム応答の正確な推定を可能にする。
論文 参考訳(メタデータ) (2024-02-01T21:38:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Spectral learning of Bernoulli linear dynamical systems models [21.3534487101893]
本研究では,線形線形力学系モデルの高速かつ効率的なフィッティングのための学習法を開発した。
提案手法は,従来の部分空間同定手法をベルヌーイ設定に拡張する。
そこで本研究では,マウスの知覚決定タスクを実行することによって,実世界の環境を推定する手法を提案する。
論文 参考訳(メタデータ) (2023-03-03T16:29:12Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Moment Estimation for Nonparametric Mixture Models Through Implicit
Tensor Decomposition [7.139680863764187]
条件に依存しない混合モデルを$mathbbRn$で推定するために,最小二乗法を交互に最適化する手法を提案する。
線形解を用いて、累積分布関数、高次モーメント、その他の成分分布の統計値を計算する。
数値実験は、アルゴリズムの競合性能と、多くのモデルや応用への適用性を実証する。
論文 参考訳(メタデータ) (2022-10-25T23:31:33Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - A Unified View of Stochastic Hamiltonian Sampling [18.300078015845262]
この研究は、後続サンプリングのためのハミルトン微分方程式(SDE)の理論的性質を再考する。
数値SDEシミュレーションから生じる2種類の誤差について検討し, 離散化誤差と雑音勾配推定による誤差について検討した。
論文 参考訳(メタデータ) (2021-06-30T16:50:11Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
多変量回帰問題に対する新しい非パラメトリック混合実験モデルを提案する。
条件付きモデルを用いて、サンプル外入力の予測は、観測された各データポイントと類似性に基づいて行われる。
混合物のパラメータと距離測定値に基づいて後部推論を行う。
論文 参考訳(メタデータ) (2020-12-03T18:08:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。