論文の概要: Response Theory via Generative Score Modeling
- arxiv url: http://arxiv.org/abs/2402.01029v3
- Date: Fri, 08 Nov 2024 15:59:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:09.543349
- Title: Response Theory via Generative Score Modeling
- Title(参考訳): 生成スコアモデリングによる応答理論
- Authors: Ludovico Theo Giorgini, Katherine Deck, Tobias Bischoff, Andre Souza,
- Abstract要約: スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせた外部摂動に対する動的システムの応答解析手法を提案する。
この手法は,非ガウス統計を含むシステム応答の正確な推定を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT). The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations. We demonstrate the improved accuracy of the methodology over conventional methods and discuss its potential as a versatile tool for predicting the statistical behavior of complex dynamical systems.
- Abstract(参考訳): 本稿では,外部摂動に対する動的システムの応答を解析し,スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせるアプローチを提案する。
この手法は、非ガウス統計を含むシステム応答の正確な推定を可能にする。
我々は,空間相関雑音を伴うオルンシュタイン・ウレンベック過程,修正確率的アレン・カーン方程式,および2次元ナヴィエ・ストークス方程式の3種類の確率的偏微分方程式から得られた時系列データを用いて,我々のアプローチを数値的に検証する。
本稿では,従来の手法よりも精度が向上し,複雑な力学系の統計的挙動を予測する汎用ツールとしての可能性について論じる。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Assessment of Uncertainty Quantification in Universal Differential Equations [1.374796982212312]
普遍微分方程式(Universal Differential Equations、UDE)は、機械式とニューラルネットワークのような普遍関数近似器という形で、事前の知識を組み合わせるために用いられる。
本稿では,UDEに対する不確実性定量化(UQ)の形式化と,重要な頻繁性とベイズ法について検討する。
論文 参考訳(メタデータ) (2024-06-13T06:36:19Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
我々はスパース方程式探索アルゴリズムを統計的に解析する手法を開発した。
このフレームワークでは、統計力学は複雑さとフィットネスの間の相互作用を分析するためのツールを提供する。
論文 参考訳(メタデータ) (2024-03-04T04:32:28Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Automatically identifying ordinary differential equations from data [0.0]
本稿では,信号の平滑化にデノナイジング技術を統合することによって,動的法則を同定する手法を提案する。
ランダムな初期条件のアンサンブルを持つよく知られた常微分方程式について,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-04-21T18:00:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
and Extract Noise Probability Distributions from Data [4.996878640124385]
SINDyは時系列データから類似の動的モデルや方程式を発見するためのフレームワークである。
自動微分と最近のRudyらによって制約されたタイムステッピングを統合したSINDyアルゴリズムの変種を開発する。
本手法は,ガウス分布,一様分布,ガンマ分布,レイリー分布などの確率分布の多様性を同定できることを示す。
論文 参考訳(メタデータ) (2020-09-12T23:52:25Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
ノイズの多いデータセットから規制法則を抽出する新しいデータ駆動手法を開発した。
まず, ドリフト係数, 拡散係数, ジャンプ測度を表現し, 実現可能な理論的枠組みを確立する。
そこで我々は, ドリフト, 拡散係数, ジャンプ測度を計算する数値アルゴリズムを設計し, ガウス雑音および非ガウス雑音による支配方程式を抽出する。
論文 参考訳(メタデータ) (2020-05-07T21:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。