BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images
- URL: http://arxiv.org/abs/2311.15328v3
- Date: Thu, 29 Feb 2024 01:49:26 GMT
- Title: BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images
- Authors: Zhanghao Chen, Yifei Sun, Wenjian Qin, Ruiquan Ge, Cheng Pan, Wenming
Deng, Zhou Liu, Wenwen Min, Ahmed Elazab, Xiang Wan, Changmiao Wang
- Abstract summary: Chest X-rays (CXRs) are commonly utilized as a low-dose modality for lung screening.
Approximately 75% of the lung area overlaps with bone, which in turn hampers the detection and diagnosis of diseases.
Bone suppression techniques have been introduced, but the current dual-energy subtraction imaging technique in the clinic requires costly equipment and subjects being exposed to high radiation.
This paper proposes a new bone suppression framework, termed BS-Diff, that comprises a conditional diffusion model equipped with a U-Net architecture and a simple enhancement module to incorporate an autoencoder.
- Score: 21.19843479423806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest X-rays (CXRs) are commonly utilized as a low-dose modality for lung
screening. Nonetheless, the efficacy of CXRs is somewhat impeded, given that
approximately 75% of the lung area overlaps with bone, which in turn hampers
the detection and diagnosis of diseases. As a remedial measure, bone
suppression techniques have been introduced. The current dual-energy
subtraction imaging technique in the clinic requires costly equipment and
subjects being exposed to high radiation. To circumvent these issues, deep
learning-based image generation algorithms have been proposed. However,
existing methods fall short in terms of producing high-quality images and
capturing texture details, particularly with pulmonary vessels. To address
these issues, this paper proposes a new bone suppression framework, termed
BS-Diff, that comprises a conditional diffusion model equipped with a U-Net
architecture and a simple enhancement module to incorporate an autoencoder. Our
proposed network cannot only generate soft tissue images with a high bone
suppression rate but also possesses the capability to capture fine image
details. Additionally, we compiled the largest dataset since 2010, including
data from 120 patients with high-definition, high-resolution paired CXRs and
soft tissue images collected by our affiliated hospital. Extensive experiments,
comparative analyses, ablation studies, and clinical evaluations indicate that
the proposed BS-Diff outperforms several bone-suppression models across
multiple metrics. Our code can be accessed at
https://github.com/Benny0323/BS-Diff.
Related papers
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
arXiv Detail & Related papers (2024-10-20T16:08:20Z) - BLS-GAN: A Deep Layer Separation Framework for Eliminating Bone Overlap in Conventional Radiographs [4.295284976294471]
In conventional radiographs, bone overlaps are prevalent, and can impede the accurate assessment of bone characteristics.
This work proposed a Bone Layer Separation GAN (BLS-GAN) framework that can produce high-quality bone layer images.
The generated images passed the visual Turing test, and improved performance in downstream tasks.
arXiv Detail & Related papers (2024-09-11T14:34:17Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
arXiv Detail & Related papers (2024-05-22T06:10:54Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.