SegACIL: Solving the Stability-Plasticity Dilemma in Class-Incremental Semantic Segmentation
- URL: http://arxiv.org/abs/2412.10834v1
- Date: Sat, 14 Dec 2024 13:39:56 GMT
- Title: SegACIL: Solving the Stability-Plasticity Dilemma in Class-Incremental Semantic Segmentation
- Authors: Jiaxu Li, Songning Lai, Rui Li, Di Fang, Kejia Fan, Jianheng Tang, Yuhan Zhao, Rongchang Zhao, Dongzhan Zhou, Yutao Yue, Huiping Zhuang,
- Abstract summary: We propose SegACIL, a novel continual learning method for semantic segmentation based on a linear closed-form solution.
Unlike traditional methods that require multiple epochs for training, SegACIL only requires a single epoch.
Experiments on the Pascal VOC2012 dataset show that SegACIL achieves superior performance in the sequential, disjoint, and overlap settings.
- Score: 12.315674474349956
- License:
- Abstract: While deep learning has made remarkable progress in recent years, models continue to struggle with catastrophic forgetting when processing continuously incoming data. This issue is particularly critical in continual learning, where the balance between retaining prior knowledge and adapting to new information-known as the stability-plasticity dilemma-remains a significant challenge. In this paper, we propose SegACIL, a novel continual learning method for semantic segmentation based on a linear closed-form solution. Unlike traditional methods that require multiple epochs for training, SegACIL only requires a single epoch, significantly reducing computational costs. Furthermore, we provide a theoretical analysis demonstrating that SegACIL achieves performance on par with joint learning, effectively retaining knowledge from previous data which makes it to keep both stability and plasticity at the same time. Extensive experiments on the Pascal VOC2012 dataset show that SegACIL achieves superior performance in the sequential, disjoint, and overlap settings, offering a robust solution to the challenges of class-incremental semantic segmentation. Code is available at https://github.com/qwrawq/SegACIL.
Related papers
- IPSeg: Image Posterior Mitigates Semantic Drift in Class-Incremental Segmentation [77.06177202334398]
We identify two critical challenges in CISS that contribute to semantic drift and degrade performance.
First, we highlight the issue of separate optimization, where different parts of the model are optimized in distinct incremental stages.
Second, we identify noisy semantics arising from inappropriate pseudo-labeling, which results in sub-optimal results.
arXiv Detail & Related papers (2025-02-07T12:19:37Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning [54.68180752416519]
Panoptic segmentation is a cutting-edge computer vision task.
We introduce a novel and efficient method for continual panoptic segmentation based on Visual Prompt Tuning, dubbed ECLIPSE.
Our approach involves freezing the base model parameters and fine-tuning only a small set of prompt embeddings, addressing both catastrophic forgetting and plasticity.
arXiv Detail & Related papers (2024-03-29T11:31:12Z) - Branch-Tuning: Balancing Stability and Plasticity for Continual Self-Supervised Learning [33.560003528712414]
Self-supervised learning (SSL) has emerged as an effective paradigm for deriving general representations from vast amounts of unlabeled data.
This poses a challenge in striking a balance between stability and plasticity when adapting to new information.
We propose Branch-tuning, an efficient and straightforward method that achieves a balance between stability and plasticity in continual SSL.
arXiv Detail & Related papers (2024-03-27T05:38:48Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - New metrics for analyzing continual learners [27.868967961503962]
Continual Learning (CL) poses challenges to standard learning algorithms.
This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately.
We propose new metrics that account for the task's increasing difficulty.
arXiv Detail & Related papers (2023-09-01T13:53:33Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
We propose a worst-case consistency regularization technique for semi-supervised learning (SSL)
We present a generalization bound for SSL consisting of the empirical loss terms observed on labeled and unlabeled training data separately.
Motivated by this bound, we derive an SSL objective that minimizes the largest inconsistency between an original unlabeled sample and its multiple augmented variants.
arXiv Detail & Related papers (2022-09-26T12:04:49Z) - SSUL: Semantic Segmentation with Unknown Label for Exemplar-based
Class-Incremental Learning [19.152041362805985]
We consider a class-incremental semantic segmentation (CISS) problem.
We propose a new method, dubbed as SSUL-M (Semantic with Unknown Label with Memory), by carefully combining several techniques tailored for semantic segmentation.
We show our method achieves significantly better performance than the recent state-of-the-art baselines on the standard benchmark datasets.
arXiv Detail & Related papers (2021-06-22T06:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.