論文の概要: SEW: Self-calibration Enhanced Whole Slide Pathology Image Analysis
- arxiv url: http://arxiv.org/abs/2412.10853v1
- Date: Sat, 14 Dec 2024 14:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:57:40.467722
- Title: SEW: Self-calibration Enhanced Whole Slide Pathology Image Analysis
- Title(参考訳): SEW: 自己校正による全スライド画像解析
- Authors: Haoming Luo, Xiaotian Yu, Shengxuming Zhang, Jiabin Xia, Yang Jian, Yuning Sun, Liang Xue, Mingli Song, Jing Zhang, Xiuming Zhang, Zunlei Feng,
- Abstract要約: 既存の手法では、グローバルな構造と局所的な詳細を同時に抽出することができない。
病理画像は、がんの診断と治療の「金の標準」と考えられている。
ギガピクセル画像は広範な組織と細胞情報を提供する。
- 参考スコア(独自算出の注目度): 34.97298505596853
- License:
- Abstract: Pathology images are considered the "gold standard" for cancer diagnosis and treatment, with gigapixel images providing extensive tissue and cellular information. Existing methods fail to simultaneously extract global structural and local detail f
- Abstract(参考訳): 病理画像はがんの診断と治療のための「金の標準」と考えられており、ギガピクセル画像は広範な組織と細胞情報を提供している。
既存の手法では、グローバルな構造的および局所的な詳細fを同時に抽出することができない
関連論文リスト
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - FMDNN: A Fuzzy-guided Multi-granular Deep Neural Network for Histopathological Image Classification [40.94024666952439]
ファジィ誘導多粒性ディープニューラルネットワーク(FMDNN)を提案する。
病理学者の多粒性診断アプローチに触発され, 粗さ, 培地, 微粒度における細胞構造の特徴抽出を行った。
ファジィ誘導型クロスアテンションモジュールは、普遍的なファジィ特徴を多粒性特徴へ導く。
論文 参考訳(メタデータ) (2024-07-22T00:46:15Z) - From Pixel to Slide image: Polarization Modality-based Pathological
Diagnosis Using Representation Learning [9.326969394501958]
病理組織学的には、甲状腺腫瘍は不適切な検体採取による診断上の課題となる。
甲状腺腫瘍の鑑別のための画素レベルのアノテーションとスライスレベルのアノテーションを統合するために,表現学習を用いた3段階モデルを構築した。
論文 参考訳(メタデータ) (2024-01-03T02:01:09Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Valuing Vicinity: Memory attention framework for context-based semantic
segmentation in histopathology [0.8866112270350612]
詳細な種類の組織を同定することは、パーソナライズされたがん治療の提供に不可欠である。
本稿では,パッチ埋め込みメモリバンクから隣接する組織コンテキストを問い合わせるパッチ近傍の注意機構を提案する。
私たちのメモリアテンションフレームワーク(MAF)は、病理医のアノテーション手順を模倣します。
論文 参考訳(メタデータ) (2022-10-21T08:49:30Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
高解像度画像はデジタル病理の進歩を妨げる。
パッチベースの処理は、しばしば複数のインスタンス学習(MIL)を組み込んで、画像レベルの予測をもたらす局所的なパッチレベルの表現を集約する。
本稿では,組織像分類に適したトランスフォーマーアーキテクチャを提案する。
局所的なきめ細かな注意と粗いグローバルな注意機構を組み合わせることで、高解像度画像の意味的な表現を効率的な計算コストで学習する。
論文 参考訳(メタデータ) (2022-02-15T16:55:09Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
前立腺癌の最終診断は、病理学者による前立腺生検におけるGleasonパターンの視覚的検出に基づいている。
コンピュータ支援診断システムは、組織内のがんのパターンを分類し分類することができる。
この研究の方法論的核心は、がん組織を分節できる残留ブロックで修正された画像分割のためのU-Net畳み込みニューラルネットワークである。
論文 参考訳(メタデータ) (2020-05-22T19:49:10Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。