論文の概要: SEW: Self-calibration Enhanced Whole Slide Pathology Image Analysis
- arxiv url: http://arxiv.org/abs/2412.10853v1
- Date: Sat, 14 Dec 2024 14:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 15:49:59.851497
- Title: SEW: Self-calibration Enhanced Whole Slide Pathology Image Analysis
- Title(参考訳): SEW: 自己校正による全スライド画像解析
- Authors: Haoming Luo, Xiaotian Yu, Shengxuming Zhang, Jiabin Xia, Yang Jian, Yuning Sun, Liang Xue, Mingli Song, Jing Zhang, Xiuming Zhang, Zunlei Feng,
- Abstract要約: 既存の手法では、グローバルな構造と局所的な詳細を同時に抽出することができない。
病理画像は、がんの診断と治療の「金の標準」と考えられている。
ギガピクセル画像は広範な組織と細胞情報を提供する。
- 参考スコア(独自算出の注目度): 34.97298505596853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pathology images are considered the "gold standard" for cancer diagnosis and treatment, with gigapixel images providing extensive tissue and cellular information. Existing methods fail to simultaneously extract global structural and local detail f
- Abstract(参考訳): 病理画像はがんの診断と治療のための「金の標準」と考えられており、ギガピクセル画像は広範な組織と細胞情報を提供している。
既存の手法では、グローバルな構造的および局所的な詳細fを同時に抽出することができない
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
我々はWSIグラフ表現を構成するグラフベースのフレームワークを開発する。
任意のパッチではなく生物学的境界に従う組織表現(ノード)を構築します。
本手法の最終段階として,グラフアテンションネットワークを用いて診断課題を解決する。
論文 参考訳(メタデータ) (2025-03-14T20:15:04Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
ゼロショット組織像分類におけるこれらの課題に対処するため, MR-PHE(Multi-Resolution Prompt-Guided Hybrid Embedding)と呼ばれる新しいフレームワークを提案する。
我々は,グローバルな画像埋め込みと重み付けされたパッチ埋め込みを統合したハイブリッドな埋め込み戦略を導入する。
類似性に基づくパッチ重み付け機構は、クラス埋め込みとの関連性に基づいて、アテンションのような重み付けをパッチに割り当てる。
論文 参考訳(メタデータ) (2025-03-13T12:18:37Z) - Ophthalmic Biomarker Detection with Parallel Prediction of Transformer and Convolutional Architecture [1.6893691730575022]
本稿では,CNNとVision Transformerのアンサンブルを用いた眼科バイオマーカー検出手法を提案する。
本手法はOCT画像から6つのバイオマーカーを検出するためにOLIVESデータセット上に実装され,データセット上でのマクロ平均F1スコアの大幅な改善を示す。
論文 参考訳(メタデータ) (2024-09-26T12:33:34Z) - Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment [6.350679043444348]
ヒスト拡散(Histo-Diffusion)は、デジタル病理学における超解像の生成と評価のために特別に設計された拡散法である。
病理組織学の復元モジュールと、高品質な画像を生成するための制御可能な拡散モジュールを含む。
論文 参考訳(メタデータ) (2024-08-27T17:31:00Z) - HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - FMDNN: A Fuzzy-guided Multi-granular Deep Neural Network for Histopathological Image Classification [40.94024666952439]
ファジィ誘導多粒性ディープニューラルネットワーク(FMDNN)を提案する。
病理学者の多粒性診断アプローチに触発され, 粗さ, 培地, 微粒度における細胞構造の特徴抽出を行った。
ファジィ誘導型クロスアテンションモジュールは、普遍的なファジィ特徴を多粒性特徴へ導く。
論文 参考訳(メタデータ) (2024-07-22T00:46:15Z) - URCDM: Ultra-Resolution Image Synthesis in Histopathology [4.393805955844748]
Ultra-Resolution Cascaded Diffusion Models (URCDMs) は、すべての病理像を高分解能で合成することができる。
本手法は脳,乳腺,腎臓の組織からなる3つの異なるデータセットを用いて評価した。
URCDMは、訓練された評価器が実際の画像と区別できない様々な解像度の出力を一貫して生成する。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
XM-GANと名づけられた少数ショット生成法は,1塩基と1対の参照組織像を入力とし,高品質で多様な画像を生成する。
我々の知る限りでは、大腸組織像の少数ショット生成を最初に調査した人物である。
論文 参考訳(メタデータ) (2023-04-04T17:50:30Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Valuing Vicinity: Memory attention framework for context-based semantic
segmentation in histopathology [0.8866112270350612]
詳細な種類の組織を同定することは、パーソナライズされたがん治療の提供に不可欠である。
本稿では,パッチ埋め込みメモリバンクから隣接する組織コンテキストを問い合わせるパッチ近傍の注意機構を提案する。
私たちのメモリアテンションフレームワーク(MAF)は、病理医のアノテーション手順を模倣します。
論文 参考訳(メタデータ) (2022-10-21T08:49:30Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
高解像度画像はデジタル病理の進歩を妨げる。
パッチベースの処理は、しばしば複数のインスタンス学習(MIL)を組み込んで、画像レベルの予測をもたらす局所的なパッチレベルの表現を集約する。
本稿では,組織像分類に適したトランスフォーマーアーキテクチャを提案する。
局所的なきめ細かな注意と粗いグローバルな注意機構を組み合わせることで、高解像度画像の意味的な表現を効率的な計算コストで学習する。
論文 参考訳(メタデータ) (2022-02-15T16:55:09Z) - Patch-Based Cervical Cancer Segmentation using Distance from Boundary of
Tissue [8.137198664755598]
組織の境界からの距離(DfB)は、元の画像から抽出できる大域的な情報である。
本手法を子宮頸癌3クラス分類に応用し, 従来法と比較して総合成績が向上した。
論文 参考訳(メタデータ) (2021-08-19T05:41:18Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
病理組織像 (HIs) は癌診断における腫瘍の種類を評価するための金の基準である。
このような分析を高速化する方法の1つは、コンピュータ支援診断(CAD)システムを使用することである。
論文 参考訳(メタデータ) (2021-02-07T19:12:32Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
前立腺癌の最終診断は、病理学者による前立腺生検におけるGleasonパターンの視覚的検出に基づいている。
コンピュータ支援診断システムは、組織内のがんのパターンを分類し分類することができる。
この研究の方法論的核心は、がん組織を分節できる残留ブロックで修正された画像分割のためのU-Net畳み込みニューラルネットワークである。
論文 参考訳(メタデータ) (2020-05-22T19:49:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。