Fast and Robust Visuomotor Riemannian Flow Matching Policy
- URL: http://arxiv.org/abs/2412.10855v1
- Date: Sat, 14 Dec 2024 15:03:33 GMT
- Title: Fast and Robust Visuomotor Riemannian Flow Matching Policy
- Authors: Haoran Ding, NoƩmie Jaquier, Jan Peters, Leonel Rozo,
- Abstract summary: Diffusion-based visuomotor policies excel at learning complex robotic tasks.
RFMP is a model that inherits the easy training and fast inference capabilities of flow matching.
- Score: 15.341017260123927
- License:
- Abstract: Diffusion-based visuomotor policies excel at learning complex robotic tasks by effectively combining visual data with high-dimensional, multi-modal action distributions. However, diffusion models often suffer from slow inference due to costly denoising processes or require complex sequential training arising from recent distilling approaches. This paper introduces Riemannian Flow Matching Policy (RFMP), a model that inherits the easy training and fast inference capabilities of flow matching (FM). Moreover, RFMP inherently incorporates geometric constraints commonly found in realistic robotic applications, as the robot state resides on a Riemannian manifold. To enhance the robustness of RFMP, we propose Stable RFMP (SRFMP), which leverages LaSalle's invariance principle to equip the dynamics of FM with stability to the support of a target Riemannian distribution. Rigorous evaluation on eight simulated and real-world tasks show that RFMP successfully learns and synthesizes complex sensorimotor policies on Euclidean and Riemannian spaces with efficient training and inference phases, outperforming Diffusion Policies while remaining competitive with Consistency Policies.
Related papers
- Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - Composite Gaussian Processes Flows for Learning Discontinuous Multimodal Policies [11.729903146557866]
Composite Gaussian Processes Flows (CGP-Flows) is a novel semi-parametric model for robotic policy.
CGP-Flows integrate Overlapping Mixtures of Gaussian Processes (OMGPs) with the Continuous Normalizing Flows (CNFs)
Experiments conducted in both simulated and real-world robotic tasks demonstrate that CGP-flows significantly improve performance in modeling control policies.
arXiv Detail & Related papers (2025-02-04T01:05:18Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Riemannian Flow Matching Policy for Robot Motion Learning [5.724027955589408]
We introduce a novel model for learning and synthesizing robot visuomotor policies.
We show that RFMP provides smoother action trajectories with significantly lower inference times.
arXiv Detail & Related papers (2024-03-15T20:48:41Z) - Robust and Communication-Efficient Federated Domain Adaptation via Random Features [9.561648314302232]
federated domain adaptation (FDA) emerges as a powerful approach to address this challenge.
RF-TCA is an enhancement to the standard Transfer Component Analysis approach that significantly accelerates computation without compromising theoretical and empirical performance.
We present extensive experiments to showcase the superior performance and robustness (to network condition) of FedRF-TCA.
arXiv Detail & Related papers (2023-11-08T13:46:58Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models [0.2538209532048866]
Reduced order models (ROMs) provide reliable approximations to parameter-dependent fluid dynamics problems in rapid times.
Deep learning (DL)-based ROMs overcome all these limitations by learning in a non-intrusive way both the nonlinear trial manifold and the reduced dynamics.
The resulting POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a cylinder benchmark, the fluid-structure interaction between an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm.
arXiv Detail & Related papers (2021-06-10T13:07:33Z) - Imitation Learning for Robust and Safe Real-time Motion Planning: A
Contraction Theory Approach [9.35511513240868]
LAG-ROS is a real-time robust motion planning algorithm for safety-critical nonlinear systems perturbed by bounded disturbances.
The LAG-ROS achieves higher control performance and task success rate with faster execution speed for real-time computation.
arXiv Detail & Related papers (2021-02-25T03:47:15Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.