論文の概要: Optimizing AI-Assisted Code Generation
- arxiv url: http://arxiv.org/abs/2412.10953v1
- Date: Sat, 14 Dec 2024 20:14:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:03:00.532049
- Title: Optimizing AI-Assisted Code Generation
- Title(参考訳): AI支援コード生成の最適化
- Authors: Simon Torka, Sahin Albayrak,
- Abstract要約: AI支援のコード生成ツールは、ソフトウェア開発を大きく変えた。
生成されたコードのセキュリティ、信頼性、機能、品質が保証されなければならない。
本稿では,これらの目標の現在までの実施について検討し,最適化戦略について検討する。
- 参考スコア(独自算出の注目度): 0.8901073744693314
- License:
- Abstract: In recent years, the rise of AI-assisted code-generation tools has significantly transformed software development. While code generators have mainly been used to support conventional software development, their use will be extended to powerful and secure AI systems. Systems capable of generating code, such as ChatGPT, OpenAI Codex, GitHub Copilot, and AlphaCode, take advantage of advances in machine learning (ML) and natural language processing (NLP) enabled by large language models (LLMs). However, it must be borne in mind that these models work probabilistically, which means that although they can generate complex code from natural language input, there is no guarantee for the functionality and security of the generated code. However, to fully exploit the considerable potential of this technology, the security, reliability, functionality, and quality of the generated code must be guaranteed. This paper examines the implementation of these goals to date and explores strategies to optimize them. In addition, we explore how these systems can be optimized to create safe, high-performance, and executable artificial intelligence (AI) models, and consider how to improve their accessibility to make AI development more inclusive and equitable.
- Abstract(参考訳): 近年、AI支援のコード生成ツールの台頭は、ソフトウェア開発を大きく変えた。
コードジェネレータは主に従来のソフトウェア開発をサポートするために使用されているが、その使用は強力でセキュアなAIシステムに拡張される予定である。
ChatGPT、OpenAI Codex、GitHub Copilot、AlphaCodeといったコードを生成するシステムでは、マシンラーニング(ML)と自然言語処理(NLP)の進歩を活用して、大きな言語モデル(LLM)が実現している。
しかし、これらのモデルが確率論的に機能することは念頭に置いておく必要がある。つまり、自然言語入力から複雑なコードを生成することができるが、生成されたコードの機能とセキュリティは保証されない。
しかし、この技術のかなりの可能性を完全に活用するには、生成されたコードのセキュリティ、信頼性、機能、品質を保証する必要がある。
本稿では,これらの目標の現在までの実施について検討し,最適化戦略について検討する。
さらに、これらのシステムが安全で高性能で実行可能な人工知能(AI)モデルを作成するためにどのように最適化できるかを検討し、AI開発をより包括的で公平にするためにアクセシビリティを改善する方法について検討する。
関連論文リスト
- Leveraging Large Language Models for Code Translation and Software Development in Scientific Computing [0.9668407688201359]
生成人工知能(GenAI)は、科学計算における生産性を変革する。
我々は、コード変換の効率的なプロセスを確立するために、プロンプトエンジニアリングとユーザ管理を組み合わせたCodeScribeというツールを開発した。
AIによるコード翻訳の課題にも対処し、科学計算における生産性向上のメリットを強調します。
論文 参考訳(メタデータ) (2024-10-31T16:48:41Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - From Today's Code to Tomorrow's Symphony: The AI Transformation of Developer's Routine by 2030 [3.437372707846067]
我々は,2024年におけるAI支援プログラミングの現状と,2030年の予測とを比較分析する。
私たちは、2030人の開発者に包括的なサポートを提供するAIツールであるHyperAssistantを構想しています。
論文 参考訳(メタデータ) (2024-05-21T12:37:36Z) - The Role of Code Proficiency in the Era of Generative AI [10.524937623398003]
ジェネレーティブAIモデルは、開発者ワークスペースに不可欠なものになりつつある。
しかし、これらのモデルの多くに「ブラックボックス」の性質があるため、課題が浮かび上がっている。
このポジションペーパーは、これらの生成モデルに対する「白い箱」アプローチを提唱する。
論文 参考訳(メタデータ) (2024-04-08T06:20:42Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Natural Language Generation and Understanding of Big Code for
AI-Assisted Programming: A Review [9.355153561673855]
本稿では,Big Codeを用いてトレーニングしたトランスフォーマーベース大規模言語モデル(LLM)に焦点を当てる。
LLMは、コード生成、コード補完、コード翻訳、コード洗練、コードの要約、欠陥検出、クローン検出など、AI支援プログラミングアプリケーションを促進する上で重要な役割を担っている。
これらのアプリケーションにNLP技術とソフトウェア自然性を導入する上での課題と機会を探究する。
論文 参考訳(メタデータ) (2023-07-04T21:26:51Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。