論文の概要: The Role of Generative AI in Strengthening Secure Software Coding Practices: A Systematic Perspective
- arxiv url: http://arxiv.org/abs/2504.19461v1
- Date: Mon, 28 Apr 2025 04:01:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.309281
- Title: The Role of Generative AI in Strengthening Secure Software Coding Practices: A Systematic Perspective
- Title(参考訳): セキュアなソフトウェアコーディングの実践強化におけるジェネレーティブAIの役割:システム的視点
- Authors: Hathal S. Alwageed, Rafiq Ahmad Khan,
- Abstract要約: ジェネレーティブAI(GenAI)をソフトウェア開発に統合することは、セキュアなコーディングプラクティスを改善する大きな可能性を秘めている。
本稿では,GenAIがセキュアコーディングの実践に与える影響を体系的に研究することを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As software security threats continue to evolve, the demand for innovative ways of securing coding has tremendously grown. The integration of Generative AI (GenAI) into software development holds significant potential for improving secure coding practices. This paper aims at systematically studying the impact of GenAI in enhancing secure coding practices from improving software security, setting forth its potential benefits, challenges, and implications. To outline the contribution of AI driven code generation tools, we analyze via a structured review of recent literature, application to the industry, and empirical studies on how these tools help to mitigate security risks, comply with the secure coding standards, and make software development efficient. We hope that our findings will benefit researchers, software engineers and cybersecurity professionals alike in integrating GenAI into a secure development workflow without losing the advantages GenAI provides. Finally, the state of the art advances and future directions of AI assisted in secure software engineering discussed in this study can contribute to the ongoing discourse on AI assisted in secure software engineering.
- Abstract(参考訳): ソフトウェアセキュリティの脅威が進化し続けるにつれ、コーディングの安全性を確保する革新的な方法の需要は飛躍的に増加した。
ジェネレーティブAI(GenAI)をソフトウェア開発に統合することは、セキュアなコーディングプラクティスを改善する大きな可能性を秘めている。
本稿では,GenAIがソフトウェアセキュリティの改善から,潜在的なメリット,課題,意義の確立に至るまで,セキュアなコーディングプラクティスの確保に与える影響を体系的に研究することを目的とする。
AI駆動のコード生成ツールの貢献を概説するために、最近の文献の構造化されたレビュー、業界への応用、そしてこれらのツールがセキュリティリスクを緩和し、セキュアなコーディング標準に準拠し、ソフトウェア開発を効率的にする方法に関する実証的研究を通して分析する。
我々は、GenAIが提供するメリットを失うことなく、GenAIをセキュアな開発ワークフローに統合することで、研究者、ソフトウェアエンジニア、サイバーセキュリティ専門家に利益をもたらすことを期待しています。
最後に、この研究で議論されたセキュアなソフトウェアエンジニアリングを支援するAIの最先端と今後の方向性は、セキュアなソフトウェアエンジニアリングを支援するAIに関する継続的な議論に寄与する。
関連論文リスト
- Comparative Analysis of AI-Driven Security Approaches in DevSecOps: Challenges, Solutions, and Future Directions [0.0]
本研究では,DevSecOpsにおけるAI駆動型セキュリティソリューションの分析と比較を行う。
この発見は、経験的検証、スケーラビリティ、セキュリティ自動化におけるAIの統合のギャップを明らかにしている。
この研究は、DevSecOpsでAIベースのセキュリティフレームワークを最適化するための今後の方向性を提案する。
論文 参考訳(メタデータ) (2025-04-27T08:18:11Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - SOK: Exploring Hallucinations and Security Risks in AI-Assisted Software Development with Insights for LLM Deployment [0.0]
GitHub Copilot、ChatGPT、Cursor AI、Codeium AIといった大規模言語モデル(LLM)は、コーディングの世界に革命をもたらした。
本稿では,AIを利用したコーディングツールのメリットとリスクを包括的に分析する。
論文 参考訳(メタデータ) (2025-01-31T06:00:27Z) - "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
本研究では、ソフトウェア開発プロセスにおけるAIを活用したツールの採用、影響、およびセキュリティに関する考察を行う。
ソフトウェア開発のさまざまな段階において,AIツールが広く採用されていることが判明した。
論文 参考訳(メタデータ) (2024-09-20T09:17:10Z) - Future of Artificial Intelligence in Agile Software Development [0.0]
AIは、LLM、GenAIモデル、AIエージェントを活用することで、ソフトウェア開発マネージャ、ソフトウェアテスタ、その他のチームメンバーを支援することができる。
AIは効率を高め、プロジェクト管理チームが直面するリスクを軽減する可能性がある。
論文 参考訳(メタデータ) (2024-08-01T16:49:50Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Using AI Assistants in Software Development: A Qualitative Study on Security Practices and Concerns [23.867795468379743]
最近の研究は、AI生成コードがセキュリティ問題を含むことを実証している。
ソフトウェア専門家がAIアシスタントの使用とセキュリティのバランスをとる方法はまだ不明だ。
本稿では,ソフトウェアプロフェッショナルがセキュアなソフトウェア開発にAIアシスタントをどのように利用するかを検討する。
論文 参考訳(メタデータ) (2024-05-10T10:13:19Z) - Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions [50.545824691484796]
ソフトウェア開発者の多様性と包摂性(SDDI)を改善するための課題と機会に関する6つのテーマを特定します。
4つのテーマの利点、害、今後の研究の方向性を特定します。
残りの2つのテーマ、人工知能とSDDIとAIとコンピュータサイエンスの教育について論じる。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。