論文の概要: Recursive Aggregates as Intensional Functions in Answer Set Programming: Semantics and Strong Equivalence
- arxiv url: http://arxiv.org/abs/2412.10975v1
- Date: Sat, 14 Dec 2024 21:34:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:46.419609
- Title: Recursive Aggregates as Intensional Functions in Answer Set Programming: Semantics and Strong Equivalence
- Title(参考訳): 解集合プログラミングにおけるインテンショナル関数としての帰納的集約:意味論と強い等価性
- Authors: Jorge Fandinno, Zachary Hansen,
- Abstract要約: 我々は,clingo と dlv によって実装された集合を持つプログラムのセマンティクスが,不動関数を持つ拡張一階述語として特徴づけられることを示した。
また、古典的な一階述語論理の推論に強い同値性をチェックする作業を削減する変換を提案する。
- 参考スコア(独自算出の注目度): 8.927343469404322
- License:
- Abstract: This paper shows that the semantics of programs with aggregates implemented by the solvers clingo and dlv can be characterized as extended First-Order formulas with intensional functions in the logic of Here-and-There. Furthermore, this characterization can be used to study the strong equivalence of programs with aggregates under either semantics. We also present a transformation that reduces the task of checking strong equivalence to reasoning in classical First-Order logic, which serves as a foundation for automating this procedure.
- Abstract(参考訳): 本稿では,解解母 clingo と dlv によって実装された集合を持つプログラムのセマンティクスを,Here-and-There の論理学における不動関数を持つ拡張一階式として特徴付けることができることを示す。
さらに、この特徴付けは、どちらの意味論の下でも集合を持つプログラムの強い同値性を研究するのに使うことができる。
また、古典的な一階述語論理の推論に強い等価性をチェックするタスクを減らし、この手順を自動化するための基礎となる変換も提案する。
関連論文リスト
- Symbolic Parameter Learning in Probabilistic Answer Set Programming [0.16385815610837165]
本稿では,確率的集合プログラミングの形式化を解くための2つのアルゴリズムを提案する。
第一に、オフザシェルフ制約最適化ソルバを用いてタスクを解く。
2つ目は期待最大化アルゴリズムの実装に基づいている。
論文 参考訳(メタデータ) (2024-08-16T13:32:47Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
本稿では,2段階のプロセスにシンボル的アプローチと意味的アプローチ(テキスト的アプローチ)を統合し,制約に対処する新しいアルゴリズムを提案する。
実験の結果,H-STARは3つの質問応答(QA)と事実検証データセットにおいて,最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-29T21:24:19Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
このアプローチは抽象弁証法フレームワークのコンピュータ支援分析を可能にする。
応用例としては、メタ理論的性質の形式的解析と検証がある。
論文 参考訳(メタデータ) (2023-12-08T09:32:26Z) - Evaluating Step-by-Step Reasoning through Symbolic Verification [20.156768135017007]
事前学習言語モデル(LM)は、文脈内学習において顕著な推論性能を示した。
LMLPは、より小さなモデルサイズであっても、長さの一般化ベンチマークにおいて、チェーン・オブ・ソート(CoT)よりも25%以上精度が高い。
論文 参考訳(メタデータ) (2022-12-16T19:30:01Z) - Non-Deterministic Approximation Fixpoint Theory and Its Application in
Disjunctive Logic Programming [11.215352918313577]
近似不動点理論(英: Approximation Fixpoint theory)は、非単調論理の意味論を研究するための枠組みである。
AFTは、不確定な情報を扱うことができる非決定論的構造を扱うよう拡張する。
この一般化の適用性と有用性は、解法論理プログラミングの文脈で説明される。
論文 参考訳(メタデータ) (2022-11-30T18:58:32Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
有限トレース(LTLf)上の線形時間論理について検討する。
命題の文字は任意の理論で解釈された一階述語式に置き換えられる。
Satisfiability Modulo Theories (LTLfMT) と呼ばれる結果の論理は半決定可能である。
論文 参考訳(メタデータ) (2022-04-28T17:57:33Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z) - Automata for dynamic answer set solving: Preliminary report [0.0]
本稿では,動的論理から言語構造を記述したAnswer Set Programming(ASP)の拡張で表現される時間的制約を実装する方法について検討する。
その考え方は、動的制約を、元の制約の満足度を強制する論理プログラムの言葉で表現されたオートマトンに変換することである。
論文 参考訳(メタデータ) (2021-09-04T03:58:12Z) - Refining Labelled Systems for Modal and Constructive Logics with
Applications [0.0]
この論文は、モーダル論理や構成論理のセマンティクスを「経済的な」証明システムに変換する手段として機能する。
精製法は、ラベル付きおよびネストされたシーケント計算の2つの証明理論パラダイムを結合する。
導入された洗練されたラベル付き電卓は、デオン性STIT論理に対する最初の証明探索アルゴリズムを提供するために使用される。
論文 参考訳(メタデータ) (2021-07-30T08:27:15Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
本稿では,関連する入力に対する出力プログラム間の整合性を利用して,スプリアスプログラムの影響を低減することを提案する。
より一貫性のあるフォーマリズムは、一貫性に基づくトレーニングを必要とせずに、モデルパフォーマンスを改善することにつながります。
論文 参考訳(メタデータ) (2021-07-13T03:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。