論文の概要: CoopetitiveV: Leveraging LLM-powered Coopetitive Multi-Agent Prompting for High-quality Verilog Generation
- arxiv url: http://arxiv.org/abs/2412.11014v2
- Date: Fri, 06 Jun 2025 01:25:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.748433
- Title: CoopetitiveV: Leveraging LLM-powered Coopetitive Multi-Agent Prompting for High-quality Verilog Generation
- Title(参考訳): CoopetitiveV: 高品質なVerilog生成のためのLLM駆動多エージェントプロンプトの活用
- Authors: Zhendong Mi, Renming Zheng, Haowen Zhong, Yue Sun, Seth Kneeland, Sayan Moitra, Ken Kutzer, Zhaozhuo Xu Shaoyi Huang,
- Abstract要約: 既存のアプローチでは、LLM支援のシングルエージェントプロンプトまたは協調のみのマルチエージェント学習が使用されている。
エージェント同士が協調して生成パイプラインを形成することのできない,LLMに基づく協調型マルチエージェントプロンプトフレームワークを提案する。
実験結果から, コーペティティブ・マルチエージェント・フレームワークは, 劣化リスクを効果的に軽減し, エラー伝播を低減できることが示唆された。
- 参考スコア(独自算出の注目度): 7.2267316594130095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in agentic LLMs have demonstrated great capabilities in Verilog code generation. However, existing approaches either use LLM-assisted single-agent prompting or cooperation-only multi-agent learning, which will lead to: (i) Degeneration issue for single-agent learning: characterized by diminished error detection and correction capabilities; (ii) Error propagation in cooperation-only multi-agent learning: erroneous information from the former agent will be propagated to the latter through prompts, which can make the latter agents generate buggy code. In this paper, we propose an LLM-based coopetitive multi-agent prompting framework, in which the agents cannot collaborate with each other to form the generation pipeline, but also create a healthy competitive mechanism to improve the generating quality. Our experimental results show that the coopetitive multi-agent framework can effectively mitigate the degeneration risk and reduce the error propagation while improving code error correction capabilities, resulting in higher quality Verilog code generation. The effectiveness of our approach is validated through extensive experiments. On VerilogEval Machine and Human dataset, CoopetitiveV+GPT-4 achieves 99.2% and 99.1% pass@10 scores, respectively. While on RTLLM, CoopetitiveV+GPT-4 obtains 100% syntax and 99.9% functionality pass@5 scores.
- Abstract(参考訳): エージェントLLMの最近の進歩は、Verilogコード生成の優れた機能を示している。
しかし、既存のアプローチでは、LLM支援のシングルエージェントプロンプトか、協調のみのマルチエージェント学習を使用する。
一 単エージェント学習の劣化問題 誤り検出及び訂正能力の低下を特徴とする
(二 協力のみによるマルチエージェント学習における誤りの伝播:前者のエージェントからの誤情報は、プロンプトを介して後者に伝達され、後者のエージェントがバギーコードを生成することができる。)
本稿では, エージェント同士が協調して生成パイプラインを形成することができず, 生成品質を向上させるための健全な競争機構を創出する, LLMベースの多エージェントプロンプトフレームワークを提案する。
実験結果から, コーペティブマルチエージェントフレームワークは, コード誤り訂正機能を改善しつつ, 劣化リスクを効果的に軽減し, エラー伝搬を低減し, 高品質なVerilogコード生成を実現することができることがわかった。
本手法の有効性は広範な実験により検証した。
VerilogEval MachineとHumanデータセットでは、CoopetitiveV+GPT-4はそれぞれ99.2%と99.1%のpass@10スコアを達成している。
RTLLMでは、CoopetitiveV+GPT-4は100%の構文と99.9%の機能を持つ。
関連論文リスト
- LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
大規模言語モデル(LLM)は、無数のタスクにまたがって印象的な機能を示してきたが、時には望ましくない出力が得られる。
本稿では LLM とプロセスベースの検証器を組み合わせた新しいフレームワーク LLM2 を紹介する。
LLMs2は妥当な候補を生成するのに責任を持ち、検証者は望ましい出力と望ましくない出力を区別するためにタイムリーなプロセスベースのフィードバックを提供する。
論文 参考訳(メタデータ) (2024-12-29T06:32:36Z) - MAGE: A Multi-Agent Engine for Automated RTL Code Generation [5.899673582879575]
MAGEは、堅牢で正確なVerilog RTLコード生成のために設計された、最初のオープンソースのマルチエージェントAIシステムである。
MAGE は VerilogEval-Human 2 ベンチマークで 95.7% の構文的および機能的正当性コード生成を実現している。
論文 参考訳(メタデータ) (2024-12-10T21:53:55Z) - EDA-Aware RTL Generation with Large Language Models [0.7831852829409273]
LLM(Large Language Models)は、RTLコードを生成するために人気が高まっている。
ゼロショット設定でエラーのないRTLコードを生成することは、最先端のLLMでも非常に難しい。
本稿では,構文と機能的エラーの反復的修正によるRTLコード生成の高速化を目的とした,自己検証型LLM非依存型エージェントフレームワークであるAIvril2を紹介する。
論文 参考訳(メタデータ) (2024-11-21T00:37:51Z) - ROCODE: Integrating Backtracking Mechanism and Program Analysis in Large Language Models for Code Generation [31.363781211927947]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
LLMはコード生成時にエラーの蓄積に影響を受けやすい。
コード生成のためのLLMにバックトラック機構とプログラム解析を統合したROCODEを提案する。
論文 参考訳(メタデータ) (2024-11-11T16:39:13Z) - REDO: Execution-Free Runtime Error Detection for COding Agents [3.9903610503301072]
Execution-free Error Detection for Coding Agents (REDO)は、実行時のエラーと静的解析ツールを統合する方法である。
我々はREDOが11.0%の精度と9.1%の重み付きF1スコアを達成し、最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-10-10T18:06:29Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection [54.775409528658486]
OriGenは、セルフリフレクション機能と新しいデータセット拡張方法論を組み込んだ、完全なオープンソースフレームワークである。
このアプローチでは,オープンソースのRTLコードデータセットの品質向上のために,コード-コード拡張技術を採用している。
論文 参考訳(メタデータ) (2024-07-23T07:22:25Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化(英: Uncertainty Quantification、UQ)は、機械学習(ML)アプリケーションにおいて重要なコンポーネントである。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、9つのタスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も有望なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
大きな言語モデル(LLM)は、機能記述からコードを実装するのに優れているが、アルゴリズムの問題に悩まされている。
我々は,アルゴリズムプログラムを LLM 生成 Oracle で合成するフレームワーク ALGO を提案し,その生成をガイドし,その正確性を検証する。
実験の結果,ALGOを装着すると,Codexモデルよりも8倍,CodeTよりも2.6倍の1サブミッションパス率が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-24T00:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。