論文の概要: Deployment Pipeline from Rockpool to Xylo for Edge Computing
- arxiv url: http://arxiv.org/abs/2412.11047v1
- Date: Sun, 15 Dec 2024 04:19:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:42.804511
- Title: Deployment Pipeline from Rockpool to Xylo for Edge Computing
- Title(参考訳): エッジコンピューティングのためのRockpoolからXyloへのデプロイメントパイプライン
- Authors: Peng Zhou, Dylan R. Muir,
- Abstract要約: Rockpoolフレームワークを介してXyloニューロモルフィックチップ上にスパイキングニューラルネットワークをデプロイすることは、大きな進歩を示している。
この記事では、Rockpoolの機能をXyloのアーキテクチャに統合することを強調する、新しいデプロイメントパイプラインについて説明する。
デジタルスパイキングアーキテクチャやイベント駆動処理モデルなど、Xyloチップのユニークな利点は、リアルタイム・パワーセンシティブなアプリケーションに適していることを示すために強調されている。
- 参考スコア(独自算出の注目度): 2.7461176651611785
- License:
- Abstract: Deploying Spiking Neural Networks (SNNs) on the Xylo neuromorphic chip via the Rockpool framework represents a significant advancement in achieving ultra-low-power consumption and high computational efficiency for edge applications. This paper details a novel deployment pipeline, emphasizing the integration of Rockpool's capabilities with Xylo's architecture, and evaluates the system's performance in terms of energy efficiency and accuracy. The unique advantages of the Xylo chip, including its digital spiking architecture and event-driven processing model, are highlighted to demonstrate its suitability for real-time, power-sensitive applications.
- Abstract(参考訳): Rockpoolフレームワークを介してXyloニューロモルフィックチップ上にスパイキングニューラルネットワーク(SNN)をデプロイすることは、エッジアプリケーションにおいて超低消費電力と高い計算効率を達成するための大きな進歩である。
本稿では、Rockpoolの能力とXyloのアーキテクチャの統合を強調し、システムの性能をエネルギー効率と精度の観点から評価する、新しいデプロイメントパイプラインについて述べる。
デジタルスパイキングアーキテクチャやイベント駆動処理モデルなど、Xyloチップのユニークな利点は、リアルタイム・パワーセンシティブなアプリケーションに適していることを示すために強調されている。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Neuromorphic on-chip reservoir computing with spiking neural network architectures [0.562479170374811]
貯留層コンピューティングは、リカレントニューラルネットワークの計算能力を活用するための有望なアプローチである。
本稿では,貯水池計算フレームワークにおける統合・火災ニューロンの2つのタスクへの適用について検討する。
本稿では,IntelのニューロモーフィックコンピューティングソフトウェアフレームワークであるLavaと,Loihiのオンチップ実装を用いて,独自の統合・ファイアコードを用いた貯水池計算性能について検討する。
論文 参考訳(メタデータ) (2024-07-30T05:05:09Z) - Latency optimized Deep Neural Networks (DNNs): An Artificial Intelligence approach at the Edge using Multiprocessor System on Chip (MPSoC) [1.949471382288103]
モバイルデバイスにおけるエッジコンピューティング(Edge at Edge)は、この要件に対処するための最適化されたアプローチのひとつだ。
本研究では,低レイテンシ・電力最適化型スマートモバイルシステムの実現の可能性と課題について考察する。
組込みFPGAエッジデバイス上でのニューラルネットワーク(NN)の性能と実装可能性について論じる。
論文 参考訳(メタデータ) (2024-07-16T11:51:41Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis [73.50359502037232]
VoxNeRFは、ニューラル室内再構成と新しいビュー合成の質と効率を高めるための新しいアプローチである。
本稿では,最も関連性の高い領域に計算資源を割り当てる効率的なボクセル誘導サンプリング手法を提案する。
私たちのアプローチは、ScanNetとScanNet++に関する広範な実験で検証されています。
論文 参考訳(メタデータ) (2023-11-09T11:32:49Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
本稿では,スパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を向上させるための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
特に、アストロサイトを拡張したSNNは、ほぼゼロのレイテンシと理論上無限のスループットを示し、計算効率が極めて高いことを示唆している。
論文 参考訳(メタデータ) (2023-09-15T08:02:29Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) は、学習したデータ分布に基づいて新しいデータサンプルを生成する最先端のアルゴリズムである。
我々は、スケーラブルなストリーミングデータフローアーキテクチャを用いてFPGA上に実装された量子化デコンボリューションGAN(QDCGAN)のトレーニングのためのHW/SW共同設計手法を提案する。
リソース制約のあるプラットフォーム上での低消費電力推論のために,様々な精度,データセット,ネットワークスケーラビリティを解析した。
論文 参考訳(メタデータ) (2022-01-18T11:16:59Z) - POEM: 1-bit Point-wise Operations based on Expectation-Maximization for
Efficient Point Cloud Processing [53.74076015905961]
我々は,効率的なポイントクラウド処理のために,期待最大化に基づくポイントワイズ処理をBNNに導入する。
私たちのPOEMは、最先端のバイナリポイントクラウドネットワークを6.7%まで大きく上回っている。
論文 参考訳(メタデータ) (2021-11-26T09:45:01Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Hardware Implementation of Hyperbolic Tangent Function using Catmull-Rom
Spline Interpolation [5.429955391775968]
ディープニューラルネットワークは、多くのコンピュータビジョンや、オブジェクト認識や音声認識などのヒューマンマシンインタフェースタスクにおいて、最先端の成果をもたらす。
これらのネットワークは計算コストがかかるため、より低コストで必要な性能を達成するためにカスタマイズされたアクセラレータが設計されている。
論文 参考訳(メタデータ) (2020-07-13T07:11:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。