Safe Reinforcement Learning using Finite-Horizon Gradient-based Estimation
- URL: http://arxiv.org/abs/2412.11138v1
- Date: Sun, 15 Dec 2024 10:05:23 GMT
- Title: Safe Reinforcement Learning using Finite-Horizon Gradient-based Estimation
- Authors: Juntao Dai, Yaodong Yang, Qian Zheng, Gang Pan,
- Abstract summary: Key aspect of Safe Reinforcement Learning (Safe RL) involves estimating the constraint condition for the next policy.
Existing estimation methods rely on the infinite-horizon discounted advantage function.
We propose the first estimation method for finite-horizon non-discounted constraints in deep Safe RL.
- Score: 25.552241659930445
- License:
- Abstract: A key aspect of Safe Reinforcement Learning (Safe RL) involves estimating the constraint condition for the next policy, which is crucial for guiding the optimization of safe policy updates. However, the existing Advantage-based Estimation (ABE) method relies on the infinite-horizon discounted advantage function. This dependence leads to catastrophic errors in finite-horizon scenarios with non-discounted constraints, resulting in safety-violation updates. In response, we propose the first estimation method for finite-horizon non-discounted constraints in deep Safe RL, termed Gradient-based Estimation (GBE), which relies on the analytic gradient derived along trajectories. Our theoretical and empirical analyses demonstrate that GBE can effectively estimate constraint changes over a finite horizon. Constructing a surrogate optimization problem with GBE, we developed a novel Safe RL algorithm called Constrained Gradient-based Policy Optimization (CGPO). CGPO identifies feasible optimal policies by iteratively resolving sub-problems within trust regions. Our empirical results reveal that CGPO, unlike baseline algorithms, successfully estimates the constraint functions of subsequent policies, thereby ensuring the efficiency and feasibility of each update.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning [7.888219789657414]
In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints.
We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders.
We frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints.
arXiv Detail & Related papers (2024-12-11T22:00:07Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
Reinforcement learning (RL) has revolutionized decision-making across a wide range of domains over the past few decades.
Yet, deploying RL policies in real-world scenarios presents the crucial challenge of ensuring safety.
Traditional safe RL approaches have predominantly focused on incorporating predefined safety constraints into the policy learning process.
We propose a novel approach that concurrently learns a safe RL control policy and identifies the unknown safety constraint parameters of a given environment.
arXiv Detail & Related papers (2024-02-24T20:01:15Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
This study introduces a novel safe reinforcement learning algorithm, Safety Critic Policy Optimization.
In this study, we define the safety critic, a mechanism that nullifies rewards obtained through violating safety constraints.
Our theoretical analysis indicates that the proposed algorithm can automatically balance the trade-off between adhering to safety constraints and maximizing rewards.
arXiv Detail & Related papers (2023-11-01T22:12:50Z) - A Policy Gradient Method for Confounded POMDPs [7.75007282943125]
We propose a policy gradient method for confounded partially observable Markov decision processes (POMDPs) with continuous state and observation spaces in the offline setting.
We first establish a novel identification result to non-parametrically estimate any history-dependent policy gradient under POMDPs using the offline data.
arXiv Detail & Related papers (2023-05-26T16:48:05Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - Chance Constrained Policy Optimization for Process Control and
Optimization [1.4908563154226955]
Chemical process optimization and control are affected by 1) plant-model mismatch, 2) process disturbances, and 3) constraints for safe operation.
We propose a chance constrained policy optimization algorithm which guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-07-30T14:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.