Unveiling Magnon-Magnon Coupling and Its Dynamic Control in Nanomagnets
- URL: http://arxiv.org/abs/2412.11181v1
- Date: Sun, 15 Dec 2024 13:21:51 GMT
- Title: Unveiling Magnon-Magnon Coupling and Its Dynamic Control in Nanomagnets
- Authors: Siddhesh Sharad Kashid, Sachin Verma, Abhishek Maurya, Manjushree Maity, Kuldeep Kumar Shrivastava, Rajeev Singh, Biswanath Bhoi,
- Abstract summary: We numerically investigate the interactions between different magnon modes excited within an elliptical magnonic nano-disc.
A comprehensive theoretical framework was presented that explains this anti-crossing phenomenon as a result of MMC.
Our combined numerical and theoretical findings offer new insights into MMC, significantly advancing the field of quantum magnonics and magnon-based quantum information technology.
- Score: 0.0
- License:
- Abstract: Hybrid magnonics, exploring the coupling between magnons and quantum systems, is an exciting field for developing next-generation information technologies. Achieving a strong and tunable magnon-magnon coupling (MMC) in confined nanomagnets is crucial for the on-chip integration of these hybrid systems and advancing the field. In this work, we numerically investigate the interactions between different magnon modes excited within an elliptical magnonic nano-disc (EMND), demonstrating an anti-crossing effect in the dispersion spectra. A comprehensive theoretical framework was presented that explains this anti-crossing phenomenon as a result of MMC and provide estimates for the strength of the coupling (g). Furthermore, we show that this intermodal coupling can be tuned from a strong coupling regime (g = 300 MHz) to a weak coupling regime by varying the direction of the external magnetic field and the intrinsic properties of the EMND. Our combined numerical and theoretical findings offer new insights into MMC, significantly advancing the field of quantum magnonics and magnon-based quantum information technology.
Related papers
- External Control over Magnon-Magnon Coupling in a Two-Dimensional Array of Square Shaped Nanomagnets [0.0]
This study delves into the tunable magnon-magnon coupling within a two-dimensional array of Ni80Fe20 square nanomagnets.
The ability to modulate coupling strengths in this system highlights its potential for developing flexible and adaptive magnonic devices.
arXiv Detail & Related papers (2024-11-11T10:33:50Z) - Cavity magnonics with domain walls in insulating ferromagnetic wires [0.0]
Magnetic domain walls (DWs) are topological defects that exhibit robust low-energy modes that can be harnessed for classical and neuromorphic computing.
We show how to exploit a geometric Berry-phase interaction between the localized DWs and the extended magnons in short ferromagnetic insulating wires.
We demonstrate that magnons can mediate long-range entangling interactions between qubits stored in distant DWs, which could facilitate the implementation of a universal set of quantum gates.
arXiv Detail & Related papers (2024-01-06T08:46:26Z) - Magnon-mediated qubit coupling determined via dissipation measurements [0.0]
Hybrid quantum systems (HQSs) of localized nitrogen-vacancy (NV) centers in diamond and delocalized magnon modes have attracted significant attention.
Here, we experimentally determine the magnon-mediated NV-NV coupling from the magnon-induced self-energy of NV centers.
Our results are quantitatively consistent with a model in which the NV center is coupled to magnons by dipolar interactions.
arXiv Detail & Related papers (2023-08-22T18:00:13Z) - Reciprocal Reservoir Induced Non-Hermitian Skin Effect [6.808148216858774]
The non-Hermitian skin effect (NHSE) describes the localization of macroscopic fraction of eigenstates at a specific boundary.
We show that the NHSE can be engineered in an open magnetic system interacting with a reciprocal reservoir.
Our work suggests the generality of nonreciprocal dynamics in magnetic systems and may inspire new schemes for engineering nonreciprocity in other quantum platforms.
arXiv Detail & Related papers (2023-07-28T20:19:42Z) - Hybrid quantum system with strong magnetic coupling of a magnetic vortex
to a nanomechanical resonator [2.04473038220853]
We present a hybrid quantum system composed of a magnetic vortex and a nanomechanical resonator.
The gyrotropic mode of the vortex can coherently couple to the quantized mechanical motion of the resonator through magnetic interaction.
arXiv Detail & Related papers (2023-01-25T07:12:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.