論文の概要: Beyond Discrete Personas: Personality Modeling Through Journal Intensive Conversations
- arxiv url: http://arxiv.org/abs/2412.11250v1
- Date: Sun, 15 Dec 2024 17:16:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:44.380869
- Title: Beyond Discrete Personas: Personality Modeling Through Journal Intensive Conversations
- Title(参考訳): 離散的ペルソナを超えて - 集中的な会話を通してのパーソナリティモデリング
- Authors: Sayantan Pal, Souvik Das, Rohini K. Srihari,
- Abstract要約: 約40万の対話を伴う新しいデータセットと、Redditの長文のジャーナルエントリを用いてパーソナライズされた会話を生成するフレームワークを導入する。
提案手法では,各著者のジャーナルエントリをクラスタリングし,最も代表的なクラスタを選択してフィルタすることにより,保持されているエントリが著者の個性を最もよく反映していることを確認した。
我々は、オープン性、良心性、外向性、同意性、神経症といったビッグファイブの性格特性を捉えて、さらにデータを洗練する。
Llama 370Bを用いて,これらの論文に基づいた高品質で人格に富んだ対話を生成する。
- 参考スコア(独自算出の注目度): 6.404122934568859
- License:
- Abstract: Large Language Models (LLMs) have significantly improved personalized conversational capabilities. However, existing datasets like Persona Chat, Synthetic Persona Chat, and Blended Skill Talk rely on static, predefined personas. This approach often results in dialogues that fail to capture human personalities' fluid and evolving nature. To overcome these limitations, we introduce a novel dataset with around 400,000 dialogues and a framework for generating personalized conversations using long-form journal entries from Reddit. Our approach clusters journal entries for each author and filters them by selecting the most representative cluster, ensuring that the retained entries best reflect the author's personality. We further refine the data by capturing the Big Five personality traits --openness, conscientiousness, extraversion, agreeableness, and neuroticism --ensuring that dialogues authentically reflect an individual's personality. Using Llama 3 70B, we generate high-quality, personality-rich dialogues grounded in these journal entries. Fine-tuning models on this dataset leads to an 11% improvement in capturing personality traits on average, outperforming existing approaches in generating more coherent and personality-driven dialogues.
- Abstract(参考訳): 大きな言語モデル(LLM)は、パーソナライズされた対話機能を大幅に改善した。
しかし、Persona Chat、Synthetic Persona Chat、Blended Skill Talkといった既存のデータセットは、静的で事前定義されたペルソナに依存している。
このアプローチは、しばしば人間の個性の流動性や進化する自然を捉えるのに失敗する対話をもたらす。
これらの制限を克服するために、約40万の対話を伴う新しいデータセットと、Redditからの長文のジャーナルエントリを使用してパーソナライズされた会話を生成するフレームワークを導入する。
提案手法では,各著者のジャーナルエントリをクラスタリングし,最も代表的なクラスタを選択してフィルタすることにより,保持されているエントリが著者の個性を最もよく反映していることを確認した。
我々は、対話が個人の性格を直感的に反映することを保証するために、ビッグファイブの性格特性(開放性、良心性、外向性、同意性、神経性)を捉えて、さらにデータを洗練する。
Llama 370Bを用いて,これらの論文に基づいた高品質で人格に富んだ対話を生成する。
このデータセットの微調整モデルは、平均的なパーソナリティ特性のキャプチャにおいて11%の改善をもたらし、より一貫性とパーソナリティ駆動の対話を生成する既存のアプローチよりも優れています。
関連論文リスト
- Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - Dynamic Generation of Personalities with Large Language Models [20.07145733116127]
Hypernetworks に基づく動的パーソナリティ生成手法である Dynamic Personality Generation (DPG) を導入する。
GPT-4にビッグファイブ・パーソナリティ理論を組み込んでパーソナリティアセスメント・マシンを形成する。
次に、この人格評価装置を用いて、スクリプトデータ中の対話を評価し、その結果、人格対話データセットを生成する。
論文 参考訳(メタデータ) (2024-04-10T15:17:17Z) - Harmonizing Code-mixed Conversations: Personality-assisted Code-mixed
Response Generation in Dialogues [28.49660948650183]
本稿では,対話から得られた5つの人格特性を教師なしの方法で活用し,応答生成の性能を高めることを目的とした,新しいアプローチを提案する。
これは、識別されたパーソナリティが対話コンテキストにシームレスに統合された場合の応答生成タスクにおけるROUGEとBLUEスコアの上昇に顕著である。
論文 参考訳(メタデータ) (2024-01-18T15:21:16Z) - PersonalityChat: Conversation Distillation for Personalized Dialog
Modeling with Facts and Traits [5.447308344436046]
PersonalityChatは、人気のPersonaChatデータセットに基づいた合成会話データセットである。
生成対話モデルの特質に基づくパーソナライズには,性格特性ラベルが有効であることを示す。
論文 参考訳(メタデータ) (2024-01-14T20:35:33Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - MPCHAT: Towards Multimodal Persona-Grounded Conversation [54.800425322314105]
我々はペルソナに基づく対話をマルチモーダル領域に拡張し、2つの主要な貢献をする。
まず,MPCHATという対話データセットを提案する。
第2に,マルチモーダル・ペルソナを組み込んだ多モーダル・ペルソナの対話タスクが,統計的に有意な性能向上をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2023-05-27T06:46:42Z) - Enhancing Personalized Dialogue Generation with Contrastive Latent
Variables: Combining Sparse and Dense Persona [16.90863217077699]
既存のパーソナライズされた対話エージェントは、スパースまたは密集したペルソナ記述と対話履歴という3つのリソースからペルソナプロファイルをモデル化する。
3つのリソースの利点を組み合わせて、より豊かで正確なペルソナを得る。
中国語と英語のデータセットに対する実験結果は、パーソナライゼーションにおけるモデルの優位性を示している。
論文 参考訳(メタデータ) (2023-05-19T07:24:27Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
我々は,対話履歴をより多く処理し,より正確なペルソナ情報を得ることのできる,ユーザ対話履歴を大規模に洗練することを提案する。
具体的には、3つの個人情報精算器とパーソナライズされた応答生成器で構成されるMSPモデルを設計する。
論文 参考訳(メタデータ) (2022-04-18T02:02:56Z) - DLVGen: A Dual Latent Variable Approach to Personalized Dialogue
Generation [28.721411816698563]
本稿では,パーソナライズされた対話を生成するDual Latent Variable Generator (DLVGen)を提案する。
以前の研究とは異なり、DLVGenは潜在的な応答に対する潜伏分布と、エージェントの潜在的なペルソナに対する潜伏分布をモデル化している。
実験の結果,DLVGenはエージェントのペルソナを正確に組み込んだ多様な応答を生成できることがわかった。
論文 参考訳(メタデータ) (2021-11-22T17:21:21Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z) - Will I Sound Like Me? Improving Persona Consistency in Dialogues through
Pragmatic Self-Consciousness [62.55060760615656]
一貫性に対処する最近のモデルは、しばしば追加の自然言語推論(NLI)ラベルでトレーニングするか、あるいは一貫性を維持するためにトレーニングされた追加モジュールを生成エージェントにアタッチする。
社会的認知と実用性に触発されて、私たちは既存の対話エージェントに、想像上のリスナーを通して、公的な自己意識を持たせました。
我々のアプローチは、Rational Speech Actsフレームワークに基づいて、会話エージェントに矛盾の発声を控えるように強制することができる。
論文 参考訳(メタデータ) (2020-04-13T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。