Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
- URL: http://arxiv.org/abs/2412.11257v1
- Date: Sun, 15 Dec 2024 17:41:38 GMT
- Title: Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
- Authors: Fengpei Li, Haoxian Chen, Jiahe Lin, Arkin Gupta, Xiaowei Tan, Gang Xu, Yuriy Nevmyvaka, Agostino Capponi, Henry Lam,
- Abstract summary: Prediction-Enhanced Monte Carlo (PEMC) framework is developed.
PEMC aims at overall cost-aware variance reduction, eliminating the need for mean knowledge.
We showcase the efficacy of PEMC through two production-grade exotic option-pricing problems.
- Score: 9.10215751465523
- License:
- Abstract: Despite being an essential tool across engineering and finance, Monte Carlo simulation can be computationally intensive, especially in large-scale, path-dependent problems that hinder straightforward parallelization. A natural alternative is to replace simulation with machine learning or surrogate prediction, though this introduces challenges in understanding the resulting errors.We introduce a Prediction-Enhanced Monte Carlo (PEMC) framework where we leverage machine learning prediction as control variates, thus maintaining unbiased evaluations instead of the direct use of ML predictors. Traditional control variate methods require knowledge of means and focus on per-sample variance reduction. In contrast, PEMC aims at overall cost-aware variance reduction, eliminating the need for mean knowledge. PEMC leverages pre-trained neural architectures to construct effective control variates and replaces computationally expensive sample-path generation with efficient neural network evaluations. This allows PEMC to address scenarios where no good control variates are known. We showcase the efficacy of PEMC through two production-grade exotic option-pricing problems: swaption pricing in HJM model and the variance swap pricing in a stochastic local volatility model.
Related papers
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Pricing American Options using Machine Learning Algorithms [0.0]
This study investigates the application of machine learning algorithms to pricing American options using Monte Carlo simulations.
Traditional models, such as the Black-Scholes-Merton framework, often fail to adequately address the complexities of American options.
By leveraging Monte Carlo methods in conjunction with Least Square Method machine learning was used.
arXiv Detail & Related papers (2024-09-05T02:52:11Z) - Robust Uncertainty Quantification Using Conformalised Monte Carlo
Prediction [6.86690482279886]
Uncertainty quantification (UQ) methods estimate the model's confidence per prediction.
We introduce MC-CP, a novel hybrid UQ method that combines a new adaptive Monte Carlo (MC) dropout method with conformal prediction (CP)
We show that MC-CP delivers significant improvements over advanced UQ methods, like MC dropout, RAPS and CQR, both in classification and regression benchmarks.
arXiv Detail & Related papers (2023-08-18T16:07:01Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - Interpretability in Safety-Critical FinancialTrading Systems [15.060749321774136]
In 2020, some of the world's most sophisticated quant hedge funds suffered losses.
We implement a gradient-based approach for precisely stress-testing how a trading model's forecasts can be manipulated.
We find our approach discovers seemingly in-sample input settings that result in large negative shifts in return distributions.
arXiv Detail & Related papers (2021-09-24T17:05:58Z) - Blending MPC & Value Function Approximation for Efficient Reinforcement
Learning [42.429730406277315]
Model-Predictive Control (MPC) is a powerful tool for controlling complex, real-world systems.
We present a framework for improving on MPC with model-free reinforcement learning (RL)
We show that our approach can obtain performance comparable with MPC with access to true dynamics.
arXiv Detail & Related papers (2020-12-10T11:32:01Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
This paper presents a framework that encompasses and generalizes existing approaches that use controls, kernels and neural networks.
Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
arXiv Detail & Related papers (2020-06-12T22:03:25Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.