Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
- URL: http://arxiv.org/abs/2412.11257v3
- Date: Sat, 07 Jun 2025 13:51:59 GMT
- Title: Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate
- Authors: Fengpei Li, Haoxian Chen, Jiahe Lin, Arkin Gupta, Xiaowei Tan, Honglei Zhao, Gang Xu, Yuriy Nevmyvaka, Agostino Capponi, Henry Lam,
- Abstract summary: Prediction-Enhanced Monte Carlo (PEMC) is a framework that leverages modern ML models as predictors, using cheap and parallelizable simulation as features, to output unbiased evaluation with reduced variance and runtime.<n>PEMC consistently reduces variance while preserving unbiasedness, highlighting its potential as a powerful enhancement to standard Monte Carlo baselines.<n>We illustrate PEMC's broader efficacy and versatility through three examples: equity derivatives such as variance swaps under local volatility models; second, interest rate derivatives such as swaption pricing under the Heath-Jarrow-Morton (HJM) interest-rate model.
- Score: 8.80905230309764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many complex simulation tasks spanning areas such as healthcare, engineering, and finance, Monte Carlo (MC) methods are invaluable due to their unbiased estimates and precise error quantification. Nevertheless, Monte Carlo simulations often become computationally prohibitive, especially for nested, multi-level, or path-dependent evaluations lacking effective variance reduction techniques. While machine learning (ML) surrogates appear as natural alternatives, naive replacements typically introduce unquantifiable biases. We address this challenge by introducing Prediction-Enhanced Monte Carlo (PEMC), a framework that leverages modern ML models as learned predictors, using cheap and parallelizable simulation as features, to output unbiased evaluation with reduced variance and runtime. PEMC can also be viewed as a "modernized" view of control variates, where we consider the overall computation-cost-aware variance reduction instead of per-replication reduction, while bypassing the closed-form mean function requirement and maintaining the advantageous unbiasedness and uncertainty quantifiability of Monte Carlo. We illustrate PEMC's broader efficacy and versatility through three examples: first, equity derivatives such as variance swaps under stochastic local volatility models; second, interest rate derivatives such as swaption pricing under the Heath-Jarrow-Morton (HJM) interest-rate model. Finally, we showcase PEMC in a socially significant context - ambulance dispatch and hospital load balancing - where accurate mortality rate estimates are key for ethically sensitive decision-making. Across these diverse scenarios, PEMC consistently reduces variance while preserving unbiasedness, highlighting its potential as a powerful enhancement to standard Monte Carlo baselines.
Related papers
- Uncertainty Quantification for Machine Learning-Based Prediction: A Polynomial Chaos Expansion Approach for Joint Model and Input Uncertainty Propagation [1.223779595809275]
This paper presents a robust framework based on Polynomial Chaos Expansion (PCE) to handle joint input and model uncertainty propagation.<n>By transforming all random inputs into a unified standard space, a PCE surrogate model is constructed, allowing efficient and accurate calculation of the mean and standard deviation of the output.
arXiv Detail & Related papers (2025-07-20T01:47:50Z) - Adaptive quantum dynamics with the time-dependent variational Monte Carlo method [0.0]
We introduce an extension of the time-dependent variational Monte Carlo (tVMC) method that adaptively controls the expressivity of the variational quantum state during the simulation.<n>We benchmark the algorithm on quantum quenches in the one-dimensional transverse-field Ising model using both spin-Jastrow and restricted Boltzmann machine wave functions.
arXiv Detail & Related papers (2025-06-10T08:47:01Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.<n>We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)<n>We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Pricing American Options using Machine Learning Algorithms [0.0]
This study investigates the application of machine learning algorithms to pricing American options using Monte Carlo simulations.
Traditional models, such as the Black-Scholes-Merton framework, often fail to adequately address the complexities of American options.
By leveraging Monte Carlo methods in conjunction with Least Square Method machine learning was used.
arXiv Detail & Related papers (2024-09-05T02:52:11Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Robust Uncertainty Quantification Using Conformalised Monte Carlo
Prediction [6.86690482279886]
Uncertainty quantification (UQ) methods estimate the model's confidence per prediction.
We introduce MC-CP, a novel hybrid UQ method that combines a new adaptive Monte Carlo (MC) dropout method with conformal prediction (CP)
We show that MC-CP delivers significant improvements over advanced UQ methods, like MC dropout, RAPS and CQR, both in classification and regression benchmarks.
arXiv Detail & Related papers (2023-08-18T16:07:01Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Interpretability in Safety-Critical FinancialTrading Systems [15.060749321774136]
In 2020, some of the world's most sophisticated quant hedge funds suffered losses.
We implement a gradient-based approach for precisely stress-testing how a trading model's forecasts can be manipulated.
We find our approach discovers seemingly in-sample input settings that result in large negative shifts in return distributions.
arXiv Detail & Related papers (2021-09-24T17:05:58Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Blending MPC & Value Function Approximation for Efficient Reinforcement
Learning [42.429730406277315]
Model-Predictive Control (MPC) is a powerful tool for controlling complex, real-world systems.
We present a framework for improving on MPC with model-free reinforcement learning (RL)
We show that our approach can obtain performance comparable with MPC with access to true dynamics.
arXiv Detail & Related papers (2020-12-10T11:32:01Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Scalable Control Variates for Monte Carlo Methods via Stochastic
Optimization [62.47170258504037]
This paper presents a framework that encompasses and generalizes existing approaches that use controls, kernels and neural networks.
Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
arXiv Detail & Related papers (2020-06-12T22:03:25Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
We adapt contextual generation of categorical sequences to a policy gradient estimator, which evaluates a set of correlated Monte Carlo (MC) rollouts for variance control.
We also demonstrate the use of correlated MC rollouts for binary-tree softmax models, which reduce the high generation cost in large vocabulary scenarios.
arXiv Detail & Related papers (2019-12-31T03:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.