Probabilities-Informed Machine Learning
- URL: http://arxiv.org/abs/2412.11526v3
- Date: Thu, 09 Jan 2025 18:44:52 GMT
- Title: Probabilities-Informed Machine Learning
- Authors: Mohsen Rashki,
- Abstract summary: This study introduces an ML paradigm inspired by domain knowledge of the structure of output function, akin to physics-informed ML.
The proposed approach integrates the probabilistic structure of the target variable into the training process.
It enhances model accuracy and mitigates risks of overfitting and underfitting.
- Score: 0.0
- License:
- Abstract: Machine learning (ML) has emerged as a powerful tool for tackling complex regression and classification tasks, yet its success often hinges on the quality of training data. This study introduces an ML paradigm inspired by domain knowledge of the structure of output function, akin to physics-informed ML, but rooted in probabilistic principles rather than physical laws. The proposed approach integrates the probabilistic structure of the target variable (such as its cumulative distribution function) into the training process. This probabilistic information is obtained from historical data or estimated using structural reliability methods during experimental design. By embedding domain-specific probabilistic insights into the learning process, the technique enhances model accuracy and mitigates risks of overfitting and underfitting. Applications in regression, image denoising, and classification demonstrate the approach's effectiveness in addressing real-world problems.
Related papers
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.
We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - The role of data-induced randomness in quantum machine learning classification tasks [0.0]
We introduce a metric for binary classification tasks, the class margin, by merging the concepts of average randomness and classification margin.
This metric analytically connects data-induced randomness with classification accuracy for a given data-embedding map.
We benchmark a range of data-embedding strategies through class margin, demonstrating that data-induced randomness imposes a limit on classification performance.
arXiv Detail & Related papers (2024-11-28T17:26:35Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
We focus on regression algorithms and the risk-assessment task of computing the probability of the true label lying inside an interval defined around the model's prediction.
We solve the risk-assessment problem using the conformal prediction approach, which provides prediction intervals that are guaranteed to contain the true label with a given probability.
arXiv Detail & Related papers (2023-10-05T13:57:24Z) - Dynamic Model Agnostic Reliability Evaluation of Machine-Learning
Methods Integrated in Instrumentation & Control Systems [1.8978726202765634]
Trustworthiness of datadriven neural network-based machine learning algorithms is not adequately assessed.
In recent reports by the National Institute for Standards and Technology, trustworthiness in ML is a critical barrier to adoption.
We demonstrate a real-time model-agnostic method to evaluate the relative reliability of ML predictions by incorporating out-of-distribution detection on the training dataset.
arXiv Detail & Related papers (2023-08-08T18:25:42Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
We introduce a new framework for genetic-programming-based symbolic regression (GPSR)
GPSR uses model evidence to formulate replacement probability during the selection phase of evolution.
It is shown to increase interpretability, improve robustness to noise, and reduce overfitting when compared to a conventional GPSR implementation.
arXiv Detail & Related papers (2022-04-12T19:56:42Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.