論文の概要: A comprehensive GeoAI review: Progress, Challenges and Outlooks
- arxiv url: http://arxiv.org/abs/2412.11643v1
- Date: Mon, 16 Dec 2024 10:41:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:42.090996
- Title: A comprehensive GeoAI review: Progress, Challenges and Outlooks
- Title(参考訳): 総合的なGeoAIレビュー:進展、課題、展望
- Authors: Anasse Boutayeb, Iyad Lahsen-cherif, Ahmed El Khadimi,
- Abstract要約: Geospatial Artificial Intelligence (GeoAI)は、最も関連性の高い研究と産業応用で注目を集めている。
本稿では,地理空間データに人工知能(AI)手法とモデルを適用した相乗的概念としてGeoAIを包括的にレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In recent years, Geospatial Artificial Intelligence (GeoAI) has gained traction in the most relevant research works and industrial applications, while also becoming involved in various fields of use. This paper offers a comprehensive review of GeoAI as a synergistic concept applying Artificial Intelligence (AI) methods and models to geospatial data. A preliminary study is carried out, identifying the methodology of the work, the research motivations, the issues and the directions to be tracked, followed by exploring how GeoAI can be used in various interesting fields of application, such as precision agriculture, environmental monitoring, disaster management and urban planning. Next, a statistical and semantic analysis is carried out, followed by a clear and precise presentation of the challenges facing GeoAI. Then, a concrete exploration of the future prospects is provided, based on several informations gathered during the census. To sum up, this paper provides a complete overview of the correlation between AI and the geospatial domain, while mentioning the researches conducted in this context, and emphasizing the close relationship linking GeoAI with other advanced concepts such as geographic information systems (GIS) and large-scale geospatial data, known as big geodata. This will enable researchers and scientific community to assess the state of progress in this promising field, and will help other interested parties to gain a better understanding of the issues involved.
- Abstract(参考訳): 近年、地球空間人工知能(GeoAI)は、最も関連性の高い研究や産業応用において注目を集め、また様々な用途にも関与している。
本稿では,地理空間データに人工知能(AI)手法とモデルを適用した相乗的概念としてGeoAIを包括的にレビューする。
作業の方法論,研究モチベーション,課題,方向性を把握し,続いて,精密農業,環境モニタリング,災害管理,都市計画など,様々な分野の応用分野においてGeoAIをどのように活用できるかを考察した。
次に統計的・意味分析を行い、続いてGeoAIが直面している課題を明確かつ正確に提示する。
そして,調査期間中に収集したいくつかの情報をもとに,今後の展望を具体的に調査する。
本稿では, 地理情報システム (GIS) や大規模地理空間データ (Big Geodata) といった他の先進的概念とGeoAIを結び付ける密接な関係性を強調するとともに, 地理空間領域とAIの関係を概観する。
これにより、研究者や科学コミュニティは、この将来性のある分野の進捗状況を評価することができ、他の関係者が関連する問題についてより深い理解を得るのに役立つだろう。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Geometric Feature Enhanced Knowledge Graph Embedding and Spatial Reasoning [8.561588656662419]
Geospatial Knowledge Graphs (GeoKGs) は地理と空間関係を相互にモデル化する。
一般的な知識グラフ埋め込み(KGE)技術のような、GeoKGからの採掘と推論のための既存の手法は、認識を欠いている。
本研究の目的は,新しい戦略を開発し,空間関係の幾何学的特徴を統合することで汎用KGEを強化することである。
論文 参考訳(メタデータ) (2024-10-24T00:53:48Z) - Self-supervised Learning for Geospatial AI: A Survey [21.504978593542354]
自己教師付き学習(SSL)は地理空間データに採用されていることで注目を集めている。
本稿では,地理空間ベクトルデータで広く用いられている3種類の一次データ(幾何学)に対して,SSL技術の適用および開発に関する包括的かつ最新の調査を行う。
論文 参考訳(メタデータ) (2024-08-22T05:28:22Z) - GeoAI Reproducibility and Replicability: a computational and spatial perspective [3.46924652750064]
本稿では,このトピックを計算的,空間的両面から詳細に分析することを目的とする。
まず,GeoAI研究を再現するための主要な目標,すなわち検証(再現性),類似あるいは新しい問題の解法(再現性)の学習と適応,研究成果の一般化可能性(再現性)について検討する。
次に、GeoAI研究におけるR&Rの欠如の原因となる要因について、(1)トレーニングデータの選択と使用、(2)GeoAIモデル設計、トレーニング、デプロイメント、推論プロセスに存在する不確実性について論じる。
論文 参考訳(メタデータ) (2024-04-15T19:43:16Z) - GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
大規模言語モデル(LLM)は、自然言語処理(NLP)における幅広いタスクを解く一般的な知識と能力で大きな成功を収めている。
我々は、LLMを地学に特化させ、さらに、地学の膨大なテキストでモデルを事前訓練し、また、カスタム収集した指導チューニングデータセットで得られたモデルを教師付き微調整(SFT)する。
我々はGeoGalacticaを65億のトークンを含む地球科学関連のテキストコーパスで訓練し、最大の地球科学固有のテキストコーパスとして保存する。
次に、100万対の命令チューニングでモデルを微調整する。
論文 参考訳(メタデータ) (2023-12-31T09:22:54Z) - GeoAI in Social Science [0.9527350779226282]
GeoAI(Geospatial AI、地理空間的人工知能)は、人工知能(AI)、地理空間的ビッグデータ、そして膨大なコンピューティングパワーを活用して、高度な自動化と知能の問題を解決するエキサイティングな新しい分野である。
本稿では、社会科学研究におけるAIの進歩を概観し、GeoAIを用いて重要なデータと知識ギャップを埋める重要な進歩について述べる。
論文 参考訳(メタデータ) (2023-12-19T20:23:18Z) - Artificial Intelligence Studies in Cartography: A Review and Synthesis
of Methods, Applications, and Ethics [4.665390376528911]
我々はGeoAIと地図学を統合した研究の体系的な内容分析と物語合成を行う。
データソース,データフォーマット,マップ評価,および6つの現代GeoAIモデルなどの地図作成のためのGeoAI手法の次元を同定する。
地図学におけるGeoAIの統合に対処する必要がある5つの倫理的課題を提起する。
論文 参考訳(メタデータ) (2023-12-13T05:15:57Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
大規模言語モデル(LLM)は自然言語処理の一般分野において大きな成功を収めている。
我々は、地球科学におけるLLM研究をさらに促進するために開発された一連の資源とともに、地球科学における最初のLLMであるK2を提示する。
論文 参考訳(メタデータ) (2023-06-08T09:29:05Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
我々は、テキスト記述、視覚図、定理知識の包括的理解を必要とする幾何学的問題を解くことに注力する。
そこで本研究では,5,010の幾何学的問題を含む幾何学的質問応答データセットGeoQAを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:34:17Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
地球系は、化石エネルギー探査、廃棄物処理、地質炭素隔離、再生可能エネルギー生成などの人間の活動によって変化した地質形成です。
したがって、ジオシステムの責任ある使用と探索は、効率的な監視、リスクアセスメント、および実用的な実装のための意思決定支援ツールに依存するジオシステムガバナンスにとって重要です。
近年の機械学習アルゴリズムと新しいセンシング技術の急速な進歩は、地下研究コミュニティがジオシステムガバナンスの有効性と透明性を向上させる新しい機会を提示しています。
論文 参考訳(メタデータ) (2021-04-10T13:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。