論文の概要: On Large Language Models in Mission-Critical IT Governance: Are We Ready Yet?
- arxiv url: http://arxiv.org/abs/2412.11698v2
- Date: Fri, 10 Jan 2025 13:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:25:46.615611
- Title: On Large Language Models in Mission-Critical IT Governance: Are We Ready Yet?
- Title(参考訳): ミッションクリティカルITガバナンスにおける大規模言語モデルについて: まだ準備はできているか?
- Authors: Matteo Esposito, Francesco Palagiano, Valentina Lenarduzzi, Davide Taibi,
- Abstract要約: 重要なインフラのセキュリティは、コンピュータの登場以来、深刻な問題となっている。
最近の出来事は、これらの課題を満たすことの難しさが増していることを示している。
我々は、ジェネレーティブAIをIT MCSのガバナンスに統合する実践者の視点を探究することを目的としている。
- 参考スコア(独自算出の注目度): 7.098487130130114
- License:
- Abstract: Context. The security of critical infrastructure has been a pressing concern since the advent of computers and has become even more critical in today's era of cyber warfare. Protecting mission-critical systems (MCSs), essential for national security, requires swift and robust governance, yet recent events reveal the increasing difficulty of meeting these challenges. Aim. Building on prior research showcasing the potential of Generative AI (GAI), such as Large Language Models, in enhancing risk analysis, we aim to explore practitioners' views on integrating GAI into the governance of IT MCSs. Our goal is to provide actionable insights and recommendations for stakeholders, including researchers, practitioners, and policymakers. Method. We designed a survey to collect practical experiences, concerns, and expectations of practitioners who develop and implement security solutions in the context of MCSs. Conclusions and Future Works. Our findings highlight that the safe use of LLMs in MCS governance requires interdisciplinary collaboration. Researchers should focus on designing regulation-oriented models and focus on accountability; practitioners emphasize data protection and transparency, while policymakers must establish a unified AI framework with global benchmarks to ensure ethical and secure LLMs-based MCS governance.
- Abstract(参考訳): コンテキスト。
重要なインフラのセキュリティは、コンピュータの出現以来、深刻な問題であり、今日のサイバー戦争の時代においてさらに重要になっている。
国家の安全に不可欠なミッションクリティカルシステム(MCS)を保護するには、迅速かつ堅牢なガバナンスが必要であるが、最近の出来事はこれらの課題に対処することの難しさが増していることを示している。
エイム。
リスク分析を強化するために、大規模言語モデルのようなジェネレーティブAI(GAI)の可能性を示す先行研究に基づいて、我々は、IT MCSのガバナンスにGAIを統合することに関する実践者の見解を探究する。
私たちのゴールは、研究者、実践家、政策立案者を含むステークホルダーに実行可能な洞察とレコメンデーションを提供することです。
方法。
我々は、MCSの文脈でセキュリティソリューションを開発し実装する実践者の実践経験、懸念、期待を収集する調査を設計した。
結論と今後の課題。
MCS ガバナンスにおける LLM の安全利用には学際的な連携が必要であることが示唆された。
専門家はデータ保護と透明性を重視し、政策立案者は倫理的かつセキュアなLCMベースのMCSガバナンスを保証するために、グローバルベンチマークを備えた統合AIフレームワークを確立する必要がある。
関連論文リスト
- Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
我々は、敵攻撃、データ中毒、バックドア攻撃、ジェイルブレイクとプロンプトインジェクション攻撃、エネルギー遅延攻撃、データとモデル抽出攻撃、出現するエージェント固有の脅威を含む、大規模なモデルに対する安全脅威の包括的分類を提示する。
我々は、大規模なモデル安全性におけるオープンな課題を特定し、議論し、包括的な安全性評価、スケーラブルで効果的な防御機構、持続可能なデータプラクティスの必要性を強調します。
論文 参考訳(メタデータ) (2025-02-02T05:14:22Z) - Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies [0.0]
サイバーセキュリティの脅威の状況は、IT構造を保護するための健全なフレームワークの開発を、積極的に推進している。
本稿では,サイバーセキュリティの脅威の性質の変化に対処する上での,このようなフレームワークの役割に焦点をあてて,ITセキュリティへのサイバーセキュリティフレームワークの適用について論じる。
この議論は、リアルタイム脅威検出と応答メカニズムのコアとして、人工知能(AI)や機械学習(ML)といった技術も挙げている。
論文 参考訳(メタデータ) (2025-02-02T03:38:48Z) - Large Language Model Safety: A Holistic Survey [35.42419096859496]
大規模言語モデル(LLM)の急速な開発と展開により、人工知能の新たなフロンティアが導入された。
この調査は、LLMの安全性の現在の状況の概要を包括的に紹介し、価値のミスアライメント、敵の攻撃に対する堅牢性、誤用、自律的なAIリスクの4つの主要なカテゴリをカバーしている。
論文 参考訳(メタデータ) (2024-12-23T16:11:27Z) - Transparency, Security, and Workplace Training & Awareness in the Age of Generative AI [0.0]
AI技術の進歩に伴い、倫理的考慮、透明性、データのプライバシー、そして人間の労働への影響は、イノベーションと効率の推進力と交差する。
我々の研究は、主流の精査から離れて、しばしば周辺で機能する公開アクセス可能な大規模言語モデル(LLM)を探索する。
具体的には、制限のないコミュニケーションとプライバシを中心としたプラットフォームであるGab AIを調べ、検閲なしで自由に対話できるようにします。
論文 参考訳(メタデータ) (2024-12-19T17:40:58Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - World Models: The Safety Perspective [6.520366712367809]
世界モデル(WM)の概念は最近、AI研究コミュニティで大きな注目を集めています。
我々は、最先端のWMの詳細な分析とその影響について、研究コミュニティに対して、WMの安全性と信頼性の向上に協力するよう呼びかける。
論文 参考訳(メタデータ) (2024-11-12T10:15:11Z) - Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends [64.57762280003618]
近い将来、LM駆動の汎用AIエージェントが、生産タスクにおいて不可欠なツールとして機能することが予想される。
本稿では,将来のLMエージェントの自律的協調に関わるシナリオについて検討する。
論文 参考訳(メタデータ) (2024-09-22T14:09:49Z) - Towards Trustworthy AI: A Review of Ethical and Robust Large Language Models [1.7466076090043157]
大きな言語モデル(LLM)は多くの分野を変革できるが、その急速な開発は、監視、倫理的創造、ユーザ信頼の構築に重大な課題を生み出している。
この総合的なレビューは、意図しない害、透明性の欠如、攻撃に対する脆弱性、人的価値との整合性、環境への影響など、LLMにおける重要な信頼の問題について考察する。
これらの課題に対処するため、倫理的監視、業界説明責任、規制、公的な関与を組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-06-01T14:47:58Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。